Atividade Microbiana em Potencial do Peptídeo btm-p1 em Alimentos

  • José Alexander Álvarez Bustamante Universidad CES
  • Luis Sthanlly Tandioy Universidad CES
  • Paola Andrea Zapata Ocampo Universidad CES

Resumo

Um dos desafios da indústria alimentícia é a preservação dos alimentos. Para isso, desenvolveram-se técnicas que prolongam a integridade de seus nutrientes e as propriedades sensoriais pelo maior tempo possível. Entre os principais problemas está a contaminação bacteriana, que foi tratada com antibióticos sintéticos, mas que pode deixar resíduos tóxicos para o consumo humano.
Além disso, existe a preocupação com doenças causadas pelas bactérias que desenvolvem resistência microbiana pelo uso prolongado de antibióticos. Por esse motivo, alternativas naturais, como a nisina, tem sido utilizadas com sucesso há várias décadas, apesar de algumas limitações que poderiam ser superadas com investigações e testes com novos peptídeos antimicrobianos. O peptídeo
btm-p1 é uma molécula policatiônica, derivada da protoxina natural Cry11Bb1 do Bacillus thuringiensis subespécie Medellín, que demonstrou a capacidade de destruir bactérias; isso o converte em um conservante de alimentos em potencial. O propósito deste trabalho foi avaliar a atividade microbiana do peptídeo btm-p1 com bactérias típicas dos alimentos, tais como Escherichia coli, Salmonella sp. e Listeria monocytogenes. Tal atividade foi estudada com cultivos em diferentes condições físico-químicas,
com o fim de simular distintos ambientes do peptídeo nos alimentos. Mostrou-se que a Listeria monocytogenes foi a bactéria com melhor recuperação depois de sua incubação com o peptídeo em diferentes temperaturas e que o pré-armazenamento de btm-p1 em ambientes ácidos aumentou sua atividade microbiana contra Escherichia coli. Conclui-se que o peptídeo btm-p1 mantém sua atividade
antimicrobiana em meios de incubação com pH de 3 a 7 e temperaturas de 4 a 37 °C.

Biografia do Autor

Luis Sthanlly Tandioy, Universidad CES

Microbiólogo industrial y ambiental. Universidad ces, de Medellín, Colombia.

Paola Andrea Zapata Ocampo, Universidad CES

Doctora en biología, magíster en biología, química farmacéutica. Universidad ces, de Medellín, Colombia.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luis Sthanlly Tandioy, Universidad CES

Microbiólogo industrial y ambiental. Universidad ces, de Medellín, Colombia.

Paola Andrea Zapata Ocampo, Universidad CES

Doctora en biología, magíster en biología, química farmacéutica. Universidad ces, de Medellín, Colombia.

Referências

M.M. Aung y Y.S. Chang, “Traceability in a food supply chain: Safety and quality perspectives”, Food Control, vol. 39, pp. 172-184, 2014, doi: 10.1016/j.foodcont. 2013.11.007.

G. El-Saber Batiha, D.E Hussein, A.M. Algammal, T.T. George, P. Jeandet, A.E. Al-Snafi, A. Tiwari, J.P. Pagnossa, C.M. Lima, N.D. Thorat, M. Zahoor, M. El-Esawi, A. Dey, S. Alghamdi, H.F. Hetta y N.Cruz-Martins, “Application of natural antimicrobials in food preservation: recent views”, Food Control, vol. 126, pp. 1080-66, 2021, doi: 10.1016/j.foodcont.2021.108066.

D.G. Newell, M. Koopmans, L. Verhoef, E. Duizer, A. Aidara-Kane, H. Sprong, M. Opsteegh, M. Langelaar, J. Threfall, F. Scheutz, J. van der Giessen y H. Kruse, “Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge”, Int. J. Food. Microbiol., vol. 139, pp. S3-S15, 2010, doi: 10.1016/j.ijfoodmicro.2010.01.021.

I.A. Rather, W.Y. Koh, W.K. Paek y J. Lim, “The sources of chemical contaminants in food and their health implications”, Front. harmacol., vol. 8, pp. 830, 2017, doi: 10.3389/fphar.2017.00830.

D.M. Tack, L. Ray, P.M. Griffin, P.R. Cieslak, J. Dunn, T. Rissman, R. Jervis, S. Lathrop, A. Muse, M. Duwell, K. Smith, M. Tobin-D’Angelo, D.J. Vugia, J. Zablotsky, B.J. Wolpert, R. Tauxe y D.C. Payne, “Preliminary incidence and trends of infections with pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 U.S. Sites, 2016-2019”, mmwr Morb. Mortal. Wkly. Rep., vol. 69, no. 17, pp. 509-514, 2020, doi: 10.15585/mmwr.mm6917a1.

D.C. Love, E.M. Nussbaumer, J. Harding, J.A. Gephart, J.L. Anderson, F. Asche, J.S. Stoll, A.L.Thorne-Lyman y M.W. Bloem, “Risks shift along seafood supply chains” Glob. Food Sec., vol. 28, pp. 1004-76, 2021, doi: 10.1016/j.gfs.2020.100476.

A. J. St. Angelo J. Vercellotti, T. Jacks y M. Legendre, “Lipid oxidation in foods”, Crit. Rev. Food Sci. Nutr., vol. 36, no. 3, pp. 175-224, 1996, doi: 10.1080/10408399609527723.

R. Franco, G. Navarro y E. Martínez-Pinilla, “Antioxidants versus food antioxidant additives and food preservatives”, Antioxidants (Basel), vol. 8, no. 11, pp. 542, 2019, doi: 10.3390/antiox8110542.

C.N. Cutter, “Microbial control by packaging: a review”, Crit. Rev. Food Sci. Nutr., vol. 42, no. 2, pp. 151-161, 2002, doi:10.1080/10408690290825493.

L. Gram, L. Ravn, M. Rasch, J.B. Bruhn, A.B. Christensen y M. Givskov, “Food spoilage--interactions between food spoilage bacteria”. Int. J. Food. Microbiol.,vol. 78, no. 1-2, pp. 79-97, 2002, doi: 10.1016/s0168-1605(02)00233-7.

D. Dave y A.E. Ghaly, “Meat spoilage mechanisms and preservation techniques: a critical review”, Am. J. Agric. Biol. Sci., vol. 6, no. 4, pp. 486-510, 2011, doi:10.3844/ajabssp.2011.486.510.

B. Ramos, F.A. Miller, T.R.S. Brandão, P. Teixeira y C.L.M. Silva, “Fresh fruits and vegetables - an overview on applied methodologies to improve its quality and safety”, Innov. Food. Sci. Emerg. Technol., vol. 20, pp. 1-15, 2013, doi: 10.1016/j.ifset.2013.07.002.

N. Upadhyay, A. Goyal, A. Kumar, D. Lal Ghai y R. Singh, “Preservation of milk and milk products for analytical purposes”, Food Rev. Int., vol. 30, no. 3, pp. 203-224, 2014, doi: 10.1080/87559129.2014.913292.

M. Zarei, N. Basiri, A. Jamnejad y M.H. Eskandari, “Prevalence of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella spp. in beef, buffalo and lamb using multiplex pcr”, Jundishapur J. Microbiol., vol. 6, no. 8, pp. e7244, 2013, doi: 10.5812/jjm.7244

R.E. Patiño-Burbano, A.K. Carrascal, J. L. Parra-Arango, J. L. Rodríguez-Bautista y J. C. Salcedo-Reyes, “Assessment of a multiplex detection method for Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes in cow milk”, Univ. Sci., vol. 24, no. 1, pp. 200-217, 2019, doi:10.11144/javeriana.sc24-1.aoam.

E. Abebe, G. Gugsa y M. Ahmed, “Review on major food-borne zoonotic bacterial pathogens”, J. Trop. Med., vol. 2020, ID. 4674235, 2020, doi:10.1155/2020/4674235.

C. Kirchhelle, “Pharming animals: a global history of antibiotics in food production (1935–2017)”, Palgrave Commun., vol. 4, no. 96, 2018, doi: 10.1057/s41599-018-0152-2.

Chen, G.G. Ying y W.J. Deng, “Antibiotic residues: extraction, analysis, and human health concerns”,J. Agric. Food. Chem., vol. 67, no. 27, pp. 7569-7586, 2019, doi: 10.1021/acs.jafc.9b01334.

Vaishali, P. Jhandai, V.J. Jadhav y R. Gupta, “Bio-preservation of foods: a review”, Eur. J. Nutr. Food. Saf., vol. 11, no. 4, pp. 164-174, 2019, doi: 10.9734/ejnfs/2019/v11i430159.

M. Rai, R. Pandit, S. Gaikwad y G. Kövics, “Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food”, J. Food Sci. Technol., vol. 53, no. 9, pp. 3381-3394, 2016, doi: 10.1007/s13197-016-2318-5.

E. Dell’Olmo, R. Gaglione, M. Sabbah, M. Schibeci, A. Cesaro, R. Di Girolamo, R. Porta y A. Arciello, “Host defense peptides identified in human apolipoprotein B as novel food biopreservatives and active coating components”, Food Microbiol., vol. 99, pp:103-804, 2021, doi.org/10.1016/j.fm.2021.103804.

M.L. Heymich, S. Srirangan y M. Pischetsrieder, “Stability and activity of the antimicrobial peptide Leg1 in solution and on meat and its optimized generation from chickpea storage protein”, Foods, vol. 10, no. 6, pp: 1192, 2021, doi: 10.3390/foods10061192

Y.L. Vishweshwaraiah, A. Acharya, V. Hegde y B. Prakash, “Rational design of hyperstable antibacterial peptides for food preservation”, npj Sci. Food, vol. 5, no. 1, pp. 26, 2021, doi:10.1038/s41538-021-00109-z.

A. Gharsallaoui, N. Oulahal, C. Joly y P. Degraeve, “Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses”, Crit. Rev. Food Sci. Nutr., vol. 56, no. 8, pp. 1262-1274, 2016, doi: 10.1080/10408398.2013.763765.

K. Rayman, N. Malik y A. Hurst, “Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system”, Appl. Environ. Microbiol., vol. 46, no. 6, pp. 1450-1452, 1983, doi: 10.1128/ AEM.46.6.1450-1452.1983.

A. Sobrino-López y O. Martín-Belloso, “Use of nisin and other bacteriocins for preservation of dairy products”, Int. Dairy J., vol. 18, pp. 329-343, 2008, doi: 10.1016/j.idairyj.2007.11.009.

M.L. Van Tassell, L.A. Ibarra-Sánchez, S.R. Takhar, S.L Amaya-Llano y M.J. Miller, “Use of a miniature laboratory fresh cheese model for investigating antimicrobial activities” J. Dairy Sci., vol. 98 (26454301), pp. 8515-8524, 2015, doi: 10.3168/jds.2015-9967.

C.N. Cutter y G.R. Siragusa, “Population reductions of gram-negative pathogens following treatments with nisin and chelators under various conditions”, J. Food. Prot., vol. 58, no. 9, pp. 977-983, 1995, doi: 10.4315/0362-028X-58.9.977

J.K. Branen y P.M. Davidson, “Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin”, Int. J. Food Microbiol., vol. 90, no. 1, pp. 63-74, 2004, doi: 10.1016/s0168-1605(03)00172-7.

I.S. Boziaris, L. Humpheson y M.R. Adams, “Effect of nisin on heat injury and inactivation of Salmonella enteritidis pt4”, Int. J. Food Microbiol., vol. 43, no. 1-2, pp. 7-13, 1998, doi: 10.1016/s0168-1605(98)00083-x

W. Liu y J.N. Hansen, “Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis”, Appl. Environ. Microbiol., vol. 56 (2119570), pp. 2551-2558, 1990.

E.A. Davies, H.E. Bevis, R. Potter, J. Harris, G.C. Williams y J. Delves-Broughton, “Research note: The effect of pH on the stability of nisin solution during autoclaving”, Lett. Appl. Microbiol., vol. 27, pp. 186-187, 1998, doi: 10.1046/j.1472-765X.1998.t01-1-00401.x

V.V. Lemeshko, M. Arias y S. Orduz, “Mitochondria permeabilization by a novel polycation peptide btm-P1”, J. Biol. Chem., vol. 280, no. 16, pp. 15579-15586, 2005, doi: 10.1074/jbc.M414064200

C. Segura, F. Guzmán, L.M. Salazar, M.E. Patarroyo, S. Orduz y V. Lemeshko, “BTM-P1 polycationic peptide biological activity and 3D-dimensional structure”, Biochem. Biophys. Res. Commun., vol. 353, no. 4, pp. 908-914, 2007, doi: 10.1016/j.bbrc.2006.12.113.

V.V. Lemeshko, F. Guzmán, M.E. Patarroyo, C. Segura y S. Orduz, “Synthetic peptide having an ionophoric and antimicrobial activity”. U.S. Patent No. 7.041.647, 2005.

V.V. Lemeshko, “Permeabilization of mitochondria and red blood cells by polycationic peptides btm-P1 and retro-btm-P1”, Peptides, vol. 32, no. 10, pp. 2010- 2020, 2011, doi: 10.1016/j.peptides.2011.08.023.

J.M. Andrews, “Determination of minimum inhibitory concentrations”, J. Antimicrob. Chemother. vol.48, no. 1, pp. 5-16, 2001, doi:10.1093/jac/48.suppl_1.5.

Clinical and Laboratory Standard Institute (clsi), “Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically”, approved standard-ninth edition, M07-A9, vol. 32, no. 2, pp. 18-20, 2012.

J.M. Shin, I. Ateia, J.R. Paulus, H. Liu, J.C. Fenno, A.H. Rickard y Y.L. Kapila, “Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells”, Front. Microbiol., vol. 6, pp. 617, 2015, doi: 10.3389/fmicb.2015.00617

A.P. Schellinger y P.W. Carr, “Solubility of Buffers in Aqueous-Organic Eluents for Reversed-Phase Liquid Chromatography”, lcgc North America, vol. 22, no. 6, pp. 544-548, 2004.

N. Malanovic y K. Lohner, “Gram-positive bacterial cell envelopes: the impact on the activity of antimicrobial peptides”, Biochim. Biophys. Acta, vol.1858, no. 5, pp. 936-946, 2016, doi: 10.1016/j.bbamem.2015.11.004.

G. Bhardwaj, V. Khipple, C.D. Bahl, J.M. Gilmore, P.J. Harvey, O. Cheneval, G.W. Buchko, S.V.S.R.K Pulavarti, Q. Kaas, A. Eletsky, P.S. Huang, W.A. Johnsen, P.J. Greisen, G.J. Rocklin, Y. Song, T.W. Linsky, A. Watkins, S.A. Rettie, X. Xu, L.P. Carter, R. Bonneau, J.M. Olson, E. Coutsias,

C.E. Correnti, T. Szyperski, D.J. Craik y D. Baker, “Accurate de novo design of hyperstable constrained peptides”, Nature, vol. 538, pp. 329-335, 2016, doi: 10.1038/nature19791.

D. Bogahawaththaa, J. Chandrapalaab y T. Vasiljevic, “Thermal denaturation of bovine immunoglobulin G and its association with other whey proteins”. Food Hydrocoll., vol. 72, pp. 350-357, 2017, doi: 10.1016/j.foodhyd.2017.06.017.

A. Bañares-Hidalgo, J. Pérez-Gil y P. Estrada, “Acidic pH triggers conformational changes at the nh2-terminal propeptide of the precursor of pulmonary surfactant protein B to form a coiled coil structure”, Biochim. Biophys. Acta, vol. 1838, no. 7, pp. 1738-1751, 2014, doi: 10.1016/j.bbamem.2014.03.016.

V. Cabra, R. Arreguin, R. Vásquez-Duhalt y A. Farres, “Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein”, Biochim. Biophys. Acta, vol. 1764, no. 6, pp. 1110-1118, 2006, doi: 10.1016/j.bbapap.2006.04.002.

J. Membre, B. Leporq, M. Vialette, E. Mettler, L. Perrier, D. Thuault y M. Zwietering,“Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food”. Int. J. Food Microbiol., vol. 100, no. 1-3, pp. 179-186, 2005, doi: https://doi.org/10.1016/j.ijfoodmicro.2004.10.015.

E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M.R. Wilkins, R.D. Appel y A. Bairoch, “Protein identification and analysis tools on the ExPASy Server”, (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press, 2005.

V.V. Lemeshko y S. Orduz, “Electrical hypothesis of toxicity of the Cry toxins for mosquito larvae”, Biosci Rep., vol. 33, no. 1, pp. 125-136, 2013, doi: 10.1042/BSR20120101.

H.M. Werner, C.C. Cabalteja y W.S. Horne, “Peptide backbone composition and protease susceptibility: impact of modification type, position, and tandem substitution”, Chembiochem., vol. 17, no. 8, pp. 712- 718, 2016, doi: 10.1002/cbic.201500312.

R. Rink, A. Arkema-Meter, I. Baudoin, E. Post, A. Kuipers, S.A. Nelemans, M. Haas Jimoh y G.N. Moll, “To protect peptide pharmaceuticals against peptidases”, J. Pharmacol. Toxicol. Methods, vol. 61, no. 2, pp. 210-218, 2010, doi: 10.1016/j.vascn.2010.02.010.

Como Citar
Álvarez Bustamante, J. A., Sthanlly Tandioy, L., & Zapata Ocampo, P. A. (2023). Atividade Microbiana em Potencial do Peptídeo btm-p1 em Alimentos. Revista Facultad De Ciencias Básicas, 17(2), 39–53. https://doi.org/10.18359/rfcb.5434
Publicado
2023-06-30
Seção
Artículos

Métricas

Crossref Cited-by logo
QR Code

Alguns itens similares: