Motivos C-terminales de gp41 del VIH-1 como posibles determinantes de la patogénesis viral

Resumen

El virus de la inmunodeficiencia humana tipo 1 (VIH-1) es el agente etiológico del síndrome de inmunodeficiencia adquirida (SIDA), una pandemia con altos costos económicos y sociales. La glicoproteína de la envoltura (env) del virus media el proceso infeccioso al unirse a la célula huésped y entrar en ella, uno de los principales componentes objetivo de los estudios desde su descubrimiento. Su endodominio o cola C-terminal (CTT) participa en procesos tardíos del ciclo replicativo, como tráfico intracelular, activación y muerte celular, lo que ocurre porque interactúa con múltiples factores celulares a través de motivos o secuencias señal presentes en toda su estructura. Aunque estas interacciones no se han entendido completamente a niveles específicos, los estudios durante más de tres décadas no dejan dudas de que este campo juega un papel fundamental en la biología del virus y probablemente en el desarrollo de la enfermedad. Esta revisión describe los estudios realizados hasta la fecha que demuestran la importancia de la CTT, centrándose en los motivos responsables de sus interacciones y sus posibles roles en la patogenicidad de la infección.

Biografía del autor/a

Jorge Andrés Narváez-Pardo, Universidad del Atlántico, Barranquilla, Colombia

BS Biology. Basic Sciences School, Biology Program, Universidad del Atlántico, Barranquilla, Colombia. 
E-mail: jandresnarvaez@gmail.com orcid: https://orcid.org/0000-0001-7437-8987 

José-Luis Villarreal, Universidad Libre, Barranquilla, Colombia

BS Microbiology. Health Sciences School, Medicine Program, Universidad Libre, Barranquilla, Colombia. 
E-mail: josel.villarrealc@unilibre.edu.co orcid: https://orcid.org/0000-0002-7240-7462 

Lourdes Luz Varela Prieto, Universidad del Atlántico, Barranquilla, Colombia

Basic Sciences School, Biology Program, Universidad del Atlántico, Barranquilla, Colombia. 
E-mail: lourdesvarela@mail.uniatlantico.edu.co orcid: https://orcid.org/0000-0001-6000-3113 

Guillermo Cervantes-Acosta, Universidad del Norte, Barranquilla, Colombia

PhD Virology and Immunology. MS Microbiology. BS Pharmaceutical Chemistry, Medicine Department, Universidad del Norte, Barranquilla, Colombia.
E-mail: guicerva@uninorte.edu.co ORCID: https://orcid.org/0000-0002-6359-9554

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jorge Andrés Narváez-Pardo, Universidad del Atlántico, Barranquilla, Colombia

BS Biology. Basic Sciences School, Biology Program, Universidad del Atlántico, Barranquilla, Colombia. 
E-mail: jandresnarvaez@gmail.com orcid: https://orcid.org/0000-0001-7437-8987 

José-Luis Villarreal, Universidad Libre, Barranquilla, Colombia

BS Microbiology. Health Sciences School, Medicine Program, Universidad Libre, Barranquilla, Colombia. 
E-mail: josel.villarrealc@unilibre.edu.co orcid: https://orcid.org/0000-0002-7240-7462 

Lourdes Luz Varela Prieto, Universidad del Atlántico, Barranquilla, Colombia

Basic Sciences School, Biology Program, Universidad del Atlántico, Barranquilla, Colombia. 
E-mail: lourdesvarela@mail.uniatlantico.edu.co orcid: https://orcid.org/0000-0001-6000-3113 

Guillermo Cervantes-Acosta, Universidad del Norte, Barranquilla, Colombia

PhD Virology and Immunology. MS Microbiology. BS Pharmaceutical Chemistry, Medicine Department, Universidad del Norte, Barranquilla, Colombia.
E-mail: guicerva@uninorte.edu.co ORCID: https://orcid.org/0000-0002-6359-9554

Referencias bibliográficas

Gallo R, Sarin P, Gelmann E, Robert-Guroff M, Richardson E, Kalyanaraman V, et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science (1979). 1983 May 20;220(4599):865-7. DOI: https://doi.org/10.1126/science.6601823

Munro JB, Mothes W. Structure and Dynamics of the Native HIV-1 Env Trimer. Journal of Virology. 2015 Jun 1;89(11):5752-5. DOI: https://doi.org/10.1128/JVI.03187-14

Santos da Silva E, Mulinge M, Lemaire M, Masque- lier C, Beraud C, Rybicki A, et al. The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission. Vartanian JP, editor. PLOS ONE [Internet]. 2016 Sep 6 [cited 2019 Apr 11]; 11(9):e0161596. Available from: http://dx.plos.org/10.1371/journal.pone.0161596. DOI: https://doi.org/10.1371/journal.pone.0161596

Murphy RE, Samal AB, Vlach J, Saad JS. Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein. Structure. 2017 Nov 7;25(11):1708-1718.e5. DOI: https://doi.org/10.1016/j.str.2017.09.010

Fernandez M, Freed EO. Meeting Review: 2018 International Workshop on Structure and Function of the Lentiviral gp41 Cytoplasmic Tail. Viruses. 2018 Nov 7;10(11):613. DOI: https://doi.org/10.3390/v10110613

Lu Z, Huang Y, Tan Y, Yu Y, Wang J, Chen YH. Identifying possible sites for antibody neutralization escape: Implications for unique functional properties of the C- terminal tail of Human Immunodeficiency Virus Type 1 gp41. Immunology Letters. 2016 Jul 1;175:21-30. DOI: https://doi.org/10.1016/j.imlet.2016.04.005

Checkley MA, Luttge BG, Freed EO. HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation. Journal of Molecular Biology. 2011 Jul 22;410(4):582-608. DOI: https://doi.org/10.1016/j.jmb.2011.04.042

Steckbeck JD, Kuhlmann AS, Montelaro RC. Structural and functional comparisons of retroviral envelope protein C-terminal domains: still much to learn. Viruses. 2014 Jan 16;6(1):284-300. DOI: https://doi.org/10.3390/v6010284

Kennedy RC, Henkel RD, Pauletti D, Allan JS, Lee TH, Essex M, et al. Antiserum to a synthetic peptide recognizes the HTLV-III envelope glycoprotein. Science (1979). 1986 Mar 28;231(4745):1556-9. DOI: https://doi.org/10.1126/science.3006246

Deschambeault J, Lalonde JP, Cervantes-Acosta G, Lodge R, Cohen EA, Lemay G. Polarized human immunodeficiency virus budding in lymphocytes involves a tyrosine-based signal and favors cell-to-cell viral transmission. J Virol [Internet]. 1999 Jun 1 [cited 2019 Mar 23];73(6):5010-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10233963 DOI: https://doi.org/10.1128/JVI.73.6.5010-5017.1999

Day JR, Münk C, Guatelli JC. The membraneproximal tyrosine-based sorting signal of human immunodeficiency virus type 1 gp41 is required for optimal viral infectivity. J Virol. 2004 Feb; 78(3):1069-79. DOI: https://doi.org/10.1128/JVI.78.3.1069-1079.2004

Cervantes-Acosta G, Welman M, Freund F, Co- hen ÉA, Lemay G. CD4/CXCR4 co-expression allows productive HIV-1 infection in canine kidney MDCK cells. Virus Research [Internet]. 2006 Sep 1 [cited 2019 Mar 23]; 120(1-2):138-45. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0168170206000736?via%3Dihub DOI: https://doi.org/10.1016/j.virusres.2006.02.012

Lodge R, Göttlinger H, Gabuzda D, Cohen EA, Lemay G. The intracytoplasmic domain of gp41 mediates polarized budding of human immunodeficiency virus type 1 in MDCK cells. J Virol. 1994 Aug 1;68(8):4857-61. DOI: https://doi.org/10.1128/jvi.68.8.4857-4861.1994

Ohno H, Aguilar RC, Fournier MC, Hennecke S, Cosson P, Bonifacino JS. Interaction of Endocytic Signals from the HIV-1 Envelope Glycoprotein Complex with Members of the Adaptor Medium Chain Family. Virology. 1997 Nov 24; 238(2): 305-15. DOI: https://doi.org/10.1006/viro.1997.8839

Postler TS, Desrosiers RC. The cytoplasmic domain of the HIV-1 glycoprotein gp41 induces NF-κB activation through TGF-β-activated kinase 1. Cell Host and Microbe [Internet]. 2012 Feb 16 [cited 2021 Dec 12]; 11(2):181-93. Available from: http://www.cell.com/article/S1931312812000273/fulltext DOI: https://doi.org/10.1016/j.chom.2011.12.005

Kirschman J, Qi M, Ding L, Hammonds J, Dienger-Stambaugh K, Wang JJ, et al. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation. J Virol. 2018;92(5). DOI: https://doi.org/10.1128/JVI.01893-17

Qi M, Chu H, Chen X, Choi J, Wen X, Hammonds J, et al. A tyrosine-based motif in the HIV-1 envelope glycoprotein tail mediates cell-type and Rab11-FIP1C dependent incorporation into virions. Proc Natl Acad Sci U S A [Internet]. 2015 Jun 16 [cited 2019 Apr 1]; 112(24): 7575-80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26034275 DOI: https://doi.org/10.1073/pnas.1504174112

Byland R, Vance PJ, Hoxie JA, Marsh M. A conserved dileucine motif mediates clathrin and AP-2-dependent endocytosis of the HIV-1 envelope protein. Mol Biol Cell. 2007 Feb;18(2):414-25. DOI: https://doi.org/10.1091/mbc.e06-06-0535

Groppelli E, Len AC, Granger LA, Jolly C. Retromer Regulates HIV-1 Envelope Glycoprotein Trafficking and Incorporation into Virions. Emerman M, editor. PLoS Pathogens [Internet]. 2014 Nov 13 [cited 2019 Feb 25]; 10(11): e1004518. Available from: https://dx.plos.org/10.1371/journal.ppat.1004518 DOI: https://doi.org/10.1371/journal.ppat.1004518

Micoli KJ, Mamaeva O, Piller SC, Barker JL, Pan G, Hunter E, et al. Point mutations in the C-terminus of HIV-1 gp160 reduce apoptosis and calmodulin binding without affecting viral replication. Virology [Internet]. 2006 Jan 20 [cited 2019 Mar 25]; 344(2): 468-79. Available from: https://www.sciencedirect.com/science/article/pii/S0042682205005271?via%3Dihub DOI: https://doi.org/10.1016/j.virol.2005.08.033

Rowell JF, Stanhope PE, Siliciano RF. Endocytosis of endogenously synthesized HIV-1 envelope protein. Mechanism and role in processing for association with class II MHC. J Immunol [Internet]. 1995 Jul 1 [cited 2019 Apr 27]; 155(1): 473-88. Available from: http:// www.ncbi.nlm.nih.gov/pubmed/7602119

Ohno H, Fournier MC, Poy G, Bonifacino JS. Structural Determinants of Interaction of Tyrosine-based Sorting Signals with the Adaptor Medium Chains. Journal of Biological Chemistry [Internet]. 1996 Nov 15 [cited 2019 Jun 13]; 271(46): 29009-15. Available from: http://www.jbc.org/content/271/46/29009.long DOI: https://doi.org/10.1074/jbc.271.46.29009

Boge M, Wyss S, Bonifacino JS, Thali M. A membrane proximal tyrosine-based signal mediates internalization of the HIV-1 envelope glycoprotein via interaction with the AP-2 clathrin adaptor. J Biol Chem [Internet]. 1998 Jun 19 [cited 2019 Apr 7]; 273(25): 15773-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9624176 DOI: https://doi.org/10.1074/jbc.273.25.15773

Egan MA, Carruth LM, Rowell JF, Yu X, Siliciano RF. Human immunodeficiency virus type 1 envelope protein endocytosis mediated by a highly conserved intrinsic internalization signal in the cytoplasmic domain of gp41 is suppressed in the presence of the Pr55gag precursor protein. J Virol [Internet]. 1996 Oct 1 [cited 2019 May 16];70(10):6547-56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8794289 DOI: https://doi.org/10.1128/jvi.70.10.6547-6556.1996

West JT, Weldon SK, Wyss S, Lin X, Yu Q, Thali M, et al. Mutation of the dominant endocytosis motif in human immunodeficiency virus type 1 gp41 can complement matrix mutations without increasing Env incorporation. J Virol. 2002 Apr 1; 76(7): 3338-49. DOI: https://doi.org/10.1128/JVI.76.7.3338-3349.2002

Berlioz-Torrent C, Shacklett BL, Erdtmann L, Dela- marre L, Bouchaert I, Sonigo P, et al. Interactions of the cytoplasmic domains of human and simian retroviral transmembrane proteins with components of the clathrin adaptor complexes modulate intracellular and cell surface expression of envelope glycoproteins. J Virol [Internet]. 1999 [cited 2019 Aug 14];73(2):1350- 61. Available from: http://www.ncbi.nlm.nih.govpubmed/9882340%0Ahttp://www.pubmedcen- tral.nih.gov/articlerender.fcgi?artid=PMC103959 DOI: https://doi.org/10.1128/JVI.73.2.1350-1361.1999

Wyss S, Berlioz-Torrent C, Boge M, Blot G, Höning S, Benarous R, et al. The Highly Conserved C-Terminal Dileucine Motif in the Cytosolic Domain of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Is Critical for Its Association with the AP-1 Clathrin Adapter. Journal of Virology. 2001 Mar 15; 75(6): 2982-92. DOI: https://doi.org/10.1128/JVI.75.6.2982-2992.2001

Lodge R, Lalonde JP, Lemay G, Cohen EA. The membrane-proximal intracytoplasmic tyrosine residue of HIV-1 envelope glycoprotein is critical for basolateral targeting of viral budding in MDCK cells. The EMBO Journal [Internet]. 1997 Feb 15 [cited 2019 Apr 18]; 16(4): 695-705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9049299 DOI: https://doi.org/10.1093/emboj/16.4.695

Owens RJ, Compans RW. Expression of the human immunodeficiency virus envelope glycoprotein is restricted to basolateral surfaces of polarized epithelial cells. J Virol. 1989 Feb 1; 63(2): 978-82. DOI: https://doi.org/10.1128/jvi.63.2.978-982.1989

Fantini J, Baghdiguian S, Yahi N, Chermann JC. Selected human immunodeficiency virus replicates preferentially through the basolateral surface of differentiated human colon epithelial cells. Virology. 1991 Dec 1; 185(2): 904-7. DOI: https://doi.org/10.1016/0042-6822(91)90570-2

Owens RJ, Dubay JW, Hunter E, Compans RW. Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3987-91. DOI: https://doi.org/10.1073/pnas.88.9.3987

Jolly C. T cell polarization at the virological synapse. Viruses. 2010 May 31;2(6):1261-78. DOI: https://doi.org/10.3390/v2061261

Delamarre L, Pique C, Rosenberg AR, Blot V, Grange MP, Le Blanc I, et al. The Y-S-L-I Tyrosine-Based Motif in the Cytoplasmic Domain of the Human T-Cell Leukemia Virus Type 1 Envelope Is Essential for Cell-to-Cell Transmission. Journal of Virology. 1999 Nov 1; 73(11): 9659-63. DOI: https://doi.org/10.1128/JVI.73.11.9659-9663.1999

Januszeski MM, Cannon PM, Chen D, Rozenberg Y, Anderson WF. Functional analysis of the cytoplasmic tail of Moloney murine leukemia virus envelope protein. Journa l of Virology. 1997;71(5). DOI: https://doi.org/10.1128/jvi.71.5.3613-3619.1997

Phillips DM, Zacharopoulos VR, Tan X, Pearce- Pratt R. Mechanisms of sexual transmission of HIV: does HIV infect intact epithelia? Trends in Microbiology. 1994 Nov 1;2(11):454-8. DOI: https://doi.org/10.1016/0966-842X(94)90804-4

Phillips DM. The role of cell-to-cell transmission in HIV infection : AIDS. AIDS [Internet]. 1994 [cited 2021 Dec 18];8:719-31. Available from: https://journals.lww.com/aidsonline/Citation/1994/06000/The_role_of_cell_to_cell_transmission_in_HIV.1.aspx DOI: https://doi.org/10.1097/00002030-199406000-00001

Cervantes-Acosta G, Lodge R, Lemay G, Cohen ÉA. Influence of human immunodeficiency virus type 1 envelope glycoprotein YXXL endocytosis/polarization signal on viral accessory protein functions. Journal of Human Virology [Internet]. 2001 [cited 2019 Mar 23]; 4(5): 249-59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11907382

Murakami T, Freed EO. The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci USA. 2000 Jan4;97(1)M:343-8. https://doi.org/10.1073/pnas.97.1.343

Qi M, Williams JA, Chu H, Chen X, Wang JJ, Ding L, et al. Rab11 - FIP1C and Rab14 Direct Plasma Membrane Sorting and Particle Incorporation of the HIV-1 Envelope Glyco protein Complex. Swanstrom R, editor. PLoS Pathogens [Internet]. 2013 Apr 4 [cited 2019 Apr 5]; 9(4): e1003278. Available from: https://dx.plos.org/10.1371/journal.ppat.1003278 DOI: https://doi.org/10.1371/journal.ppat.1003278

Hutagalung AH, Novick PJ. Role of Rab GT- Pases in membrane traffic and cell physiology. Vol. 91, Physiological Reviews. American Physiological Society Bethesda, MD; 2011. p. 119-49. DOI: https://doi.org/10.1152/physrev.00059.2009

Kelly EE, Horgan CP, Adams C, Patzer TM, Ní DM, Sh’ S, et al. Class I Rab11 family interacting proteins are binding targets for the Rab14 GTPase. Biology of the Cell [Internet]. 2010 Jan 1 [cited 2021 Dec 18];102(1):51-62. Available from: https://onlinelibrary.wiley.com/doi/full/10.1042/BC20090068 DOI: https:// doi.org/10.1042/BC20090068

Staubus AO, Alfadhli A, Barklis RL, Barklis E. Replication of HIV-1 envelope protein cytoplasmic domain variants in permissive and restrictive cells. Virology. 2019 Dec 1;538:1-10. DOI: https://doi.org/10.1016/j.virol.2019.09.008

Blot G, Janvier K, le Panse S, Benarous R, Berlioz-Torrent C. Targeting of the Human Immunodeficiency Virus Type 1 Envelope to the trans-Golgi Network through Binding to TIP47 Is Required for Env Incorporation into Virions and Infectivity. Journal of Virology [Internet]. 2003 Jun 15 [cited 2019 Mar 23]; 77(12): 6931-45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12768012 DOI: https://doi. org/10.1128/JVI.77.12.6931-6945.2003

Lambelé M, Labrosse B, Roch E, Moreau A, Verrier B, Barin F, et al. Impact of natural polymorphism within the gp41 cytoplasmic tail of human immunodeficiency virus type 1 on the intracellular distribution of envelope glycoproteins and viral assembly. J Virol [Internet]. 2007 Jan 1 [cited 2019 Apr 11]; 81(1): 125- 40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17050592 DOI: https://doi.org/10.1128/ JVI.01659-06

Díaz E, Pfeffer SR. TIP47: A cargo selection device for mannose 6-phosphate receptor trafficking. Cell. 1998 May 1;93(3):433-43. DOI: https://doi.org/10.1016/ S0092-8674(00)81171-X

Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, et al. Rab9 GTPase Is Required for Replication of Human Immunodeficiency Virus Type 1, Filoviruses, and Measles Virus. Journal of Virology. 2005 Sep 15; 79(18): 11742-51. DOI: https://doi.org/10.1128/JVI.79.18.1174211751.2005

Novick P, Zerial M. The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol [Internet]. 1997 [cited 2021 Dec 18]; 9(4): 496-504. Available from: https://pubmed.ncbi.nlm.nih.gov/9261061/ DOI: https://doi.org/10.1016/S0955-0674(97)80025-7

Checkley MA, Luttge BG, Mercredi PY, Kyere SK, Donlan J, Murakami T, et al. Reevaluation of the requirement for TIP47 in human immunodeficiency virus type 1 envelope glycoprotein incorporation. J Virol [Internet]. 2013 Mar 15 [cited 2019 May 16]; 87(6): 3561-70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23325685 DOI: https://doi.org/10.1128/JVI.03299-12

Seaman MNJ. The retromer complex-endosomal protein recycling and beyond. Vol. 125, Journal of Cell Science. The Company of Biologists Ltd; 2012. p. 4693-702. DOI: https://doi.org/10.1242/jcs.103440

Bültmann A, Muranyi W, Seed B, Haas J. Identification of two sequences in the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein that inhibit cell surface expression. J Virol. 2001 Jun 1; 75(11): 5263-76. DOI: https://doi.org/10.1128/ JVI.75.11.5263-5276.2001

Jiang J, Aiken C. Maturation-Dependent Human Immunodeficiency Virus Type 1 Particle Fusion Requires a Carboxyl-Terminal Region of the gp41 Cytoplasmic tail. Journal of Virology. 2007

Sep 15; 81(18): 9999-10008. DOI: https://doi.org/10.1128/JVI.00592-07

Postler TS, Desrosiers RC. The tale of the long tail: the cytoplasmic domain of HIV-1 gp41. J Virol. 2013 Jan 1;87(1):2-15. DOI: https://doi.org/10.1128/JVI.02053- 12

Willems L, Gatot JS, Mammerickx M, Portetelle D, Burny A, Kerkhofs P, et al. The YXXL signalling motifs of the bovine leukemia virus transmembrane protein are required for in vivo infection and maintenance of high viral loads. J Virol. 1995 Jul 1; 69(7): 4137-41. DOI: https://doi.org/10.1128/jvi.69.7.4137-4141.1995

Fultz PN, Vance PJ, Endres MJ, Tao B, Dvorin JD, Davis IC, et al. In Vivo Attenuation of Simian Immunodeficiency Virus by Disruption of a Tyrosine- Dependent Sorting Signal in the Envelope Glycoprotein Cytoplasmic Tail. Journal of Virology [Internet]. 2001 Jan 1 [cited 2019 Mar 23]; 75(1): 278-91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11119598 DOI: https://doi.org/10.1128/JVI.75.1.278-291.2001

Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation [Internet]. Vol. 1, Cold Spring Harbor perspectives in biology. 2009 [cit- ed 2019 Apr 19]. p. a000034-a000034. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20066092 DOI: https://doi.org/10.1101/cshperspect.a000034

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Vol. 2, Signal Transduction and Targeted Therapy. Springer Nature; 2017. p. 1-9. DOI: https://doi.org/10.1038/sigtrans.2017.23

Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature. 1987 Apr; 326 (6114): 711-3. DOI: https://doi.org/10.1038/326711a0

Costin JM, Rausch JM, Garry RF, Wimley WC. Viroporin potential of the lentivirus lytic peptide (LLP) domains of the HIV-1 gp41 protein. Virology Journal [Internet]. 2007 Nov 20 [cited 2021 Dec 12];4(1):1-14. Available from: https://virologyj.biomedcentral.com/articles/10.1186/1743-422X-4-123 DOI: https://doi.org/10.1186/1743-422X-4-123

Miller MA, Garry RF, Jaynes JM, Montelaro RC. A Structural Correlation Between Lentivirus Transmembrane Proteins and Natural Cytolytic Peptides. AIDS Research and Human Retroviruses [Internet]. 1991 Jun 16 [cited 2019 Apr 19]; 7(6): 511-9. DOI: https://doi.org/10.1089/aid.1991.7.511

da Silva E, Mulinge M, Bercoff D. The frantic play of the concealed HIV envelope cytoplasmic tail. Retrovirology [Internet]. 2013 May 24 [cited 2019 Jan 5];10(1):54. Available from: http://retrovirology.biomedcentral.com/articles/10.1186/1742-4690-10-54 DOI:https://doi.org/10.1186/1742-4690-10-54

Nicotera P, Orrenius S. The role of calcium in apoptosis. Cell Calcium. 1998 Feb 1;23(2-3):173-80. DOI: https://doi.org/10.1016/S0143-4160(98)90116-6

Srinivas SK, Srinivas R v, Anantharamaiah GM, Compans RW, Segrest JP. Cytosolic domain of the human immunodeficiency virus envelope glycoproteins binds to calmodulin and inhibits calmodulin-regulated proteins. J Biol Chem [Internet]. 1993 Oct 25 [cited 2019 Apr 25]; 268 (30): 22895-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8226798 DOI: https://doi.org/10.1016/S0021-9258(18)41610-9

Miller MA, Mietzner TA, Cloyd MW, Robey WG, Montelaro RC. Identification of a calmodulin-binding and inhibitory peptide domain in the HIV-1 transmembrane glycoprotein. AIDS Res Hum Retroviruses [Internet]. 1993 Nov [cited 2019 Apr 25]; 9 (11): 1057-66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8312049 DOI: https://doi.org/10.1089/aid.1993.9.1057

Sasaki M, Uchiyama J, Ishikawa H, Matsushita S, Kimura G, Nomoto K, et al. Induction of apoptosis by calmodulin-dependent intracellular Ca2+ elevation in CD4+ cells expressing gp 160 of HIV. Virology [Internet]. 1996 Oct 1 [cited 2021 Dec 18];224(1):18-24. Available from: https://pubmed.ncbi.nlm.nih.gov/8862395/ DOI: https://doi.org/10.1006/viro.1996.0502

Beaumont E, Vendrame D, Verrier B, Roch E, Biron F, Barin F, et al. Matrix and Envelope Coevolution Revealed in a Patient Monitored since Primary Infection with Human Immunodeficiency Virus Type 1. Journal of Virology [Internet]. 2009 Oct [cited 2021 Dec 18]; 83 (19): 9875-89. DOI: https://doi.org/10.1128/ JVI.01213-09

Ball SC, Abraha A, Collins KR, Marozsan AJ, Baird H, Quiñones-Mateu ME, et al. Comparing the Ex Vivo Fitness of CCR5-Tropic Human Immunodeficiency Virus Type 1 Isolates of Subtypes B and C. Journal of Virology [Internet]. 2003 Jan 15 [cited 2021 Mar 22]; 77 (2): 1021- 38. Available from: http://jvi.asm.org/ DOI: https://doi.org/10.1128/JVI.77.2.1021-1038.2003

Venner CM, Nankya I, Kyeyune F, Demers K, Kwok C, Chen PL, et al. Infecting HIV-1 Subtype Predicts Disease Progression in Women of Sub-Saharan Africa. EBioMedicine [Internet]. 2016 Nov 1 [cited 2021 Mar 22]; 13: 305-14. Available from: /pmc/articles/ PMC5264310/ DOI: https://doi.org/10.1016/j.ebiom.2016.10.014

Cómo citar
Narváez-Pardo, J. A. ., Villarreal, J.-L. ., Varela Prieto, L. L. ., & Cervantes-Acosta, G. (2022). Motivos C-terminales de gp41 del VIH-1 como posibles determinantes de la patogénesis viral. Revista Med, 29(2), 107–120. https://doi.org/10.18359/rmed.5850
Publicado
2022-08-01
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code

Algunos artículos similares: