Complejidad de la expresión de genes asociados a obesidad en el tejido adiposo humano

  • Alejandra Rodríguez Universidad del Valle
  • Carlos Echandía Universidad del Valle
  • Adalberto Sánchez Universidad del Valle
  • José María Satizábal Universidad del Valle
  • Julio César Montoya Universidad del Valle
  • Felipe García Vallejo Universidad del Valle


Objetivo: analizar la complejidad de la expresión génica en tejido adiposo de genes asociados con obesidad, mediante simulación computacional con diferentes herramientas bioinformáticas. Métodos: después de una búsqueda bibliográfica en PubMed, se seleccionaron 37 genes asociados con obesidad con fold change mayor a 1,5. A partir del cálculo de valores de los z-score obtenidos de experimentos de micromatrices de ADN de muestras de tejido adiposo de personas obesas y de control, se construyó una red de interacción con el programa Cytoscape 3.2. La información detallada sobre las características genómicas de estos genes se extrajo de las bases de datos Genome Browser de la UCSC y del NCBI. Utilizando herramientas de análisis de multivariado, se hizo un análisis de componentes principales y uno de agrupación. Resultados: la red construida mostró que los genes con mayor número de interacciones fueron: 1) el factor nuclear respiratorio (NRF1), 2) el canal activado de potasio activado por calcio alfa 1 (KCNMA1) y 3) la sintasa de ácidos grasos (FASN). Los que tuvieron mayores valores de expresión fueron: 1) el factor de crecimiento endotelial vascular A (VEGFA), 2) la dioxigenasa dependiente de alfa-cetoglutarato (FTO) y 3) el regulador de crecimiento neuronal 1 (NEGR1). Las proteínas IL6, BDNF y HLC tuvieron los mayores valores de interacción con IL6R, NRF1 y ACACB, respetivamente. Las categorías ontológicas más importantes se relacionaron con procesos metabólicos de lipoproteínas, el ciclo de los ácidos tricarboxílicos, la activación de las MAP-quinasas y la cascada JNK. Conclusiones: en su conjunto los resultados obtenidos de sobreexpresión diferencial de genes asociados con el metabolismo de lípidos en el tejido adiposo de personas obesas podría ser un criterio para discriminar a nivel de diagnóstico esta patología.


La descarga de datos todavía no está disponible.


Heianza Y, Qi L, Gene-Diet Interaction and Precision Nutrition in Obesity. Int J Mol Sci. 2017;18(4). P ii.

Del Pozo C, Calvo RM, Vesperinas-García G, Gómez-Ambrosi J, Frühbeck G, Rubio MA et al. Expression Profile in Omental and Subcutaneous Adipose Tissue from Lean and Obese Subjects. Repression of Lipolytic and Lipogenic Genes. Obes Surg. 2011; 21: 633-43.

Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, et al. Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med. 2012 Oct 11;367(15): 1387-96.

Brunkwall L, Chen Y, Hindy G, Rukh G, Ericson U, et al. Sugar-sweetened beverage consumption and genetic predisposition to obesity in 2 swedish cohorts. Am. J. Clin. Nutr. 2016; 104: 809-15.

Olsen NJ, Angquist L, Larsen SC, Linneberg A, Skaaby T, et al. Interactions between genetic variants associated with adiposity traits and soft drinks in relation to longitudinal changes in body weight and waist circumference. Am. J. Clin. Nutr. 2016; 104: 816-26.

Qi Q, Chu AY, Kang JH, Huang J, Rose LM, et al. Fried food consumption, genetic risk, and body mass index: Gene-Diet interaction analysis in three us cohort studies. BMJ. 2014; 348: g1610.

Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN, et al. Gene-obesogenic environment interactions in the uk biobank study. Int. J. Epidemiol. 2017; 46(2): 559-575.

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013. A systematic analysis for the global burden of disease study 2013. Lancet. 2014, 384: 766-81.

WHO. Obesity and overweight. Fact sheet. Consultado: Octubre de 2017. Disponible en:

Yang Q, Xiao T, Guo J, Su Z. Complex Relationship between Obesity and the Fat Mass and Obesity Locus. Int J Biol Sci. 2017; 13(5): 615-62.

Park JH, Kim SH, Lee MS, Kim MS. Epigenetic modification by dietary factors: Implications in metabolic syndrome. Mol Aspects Med. 2017; 54: 58-70

Qi L, Cho YA. Gene‐environment interaction and obesity. Nutr Rev. 2008; 66(12): 684-94.

Finkelstein EA, Khavjou OA, Thompson H, Trogdon JG, Pan L, et al. Obesity and severe obesity forecasts through 2030. Am J Prev Med. 2012; 42(6): 563-70.

Choi B, Schnall P, Dobson M, Yang H, Baker D, et al. Socioecological framework for research on work and obesity in diverse urban transit operators based on gender, race, and ethnicity. Ann Occup Environ Med. 2017; 29: 15.

Coppin G. The anterior medial temporal lobes: Their role in food intake and body weight regulation. Physiol Behav. 2016; 167: 60-70.

Horstmann A, Fenske WK, Hankir MK. Argument for a non-linear relationship between severity of human obesity and dopaminergic tone. Obes Rev. 2015 Oct; 16(10): 821-30.

Horstmann A. It wasn’t me; it was my brain–Obesity-associated characteristics of brain circuits governing decisionmaking. Physiol Behav. 2017; 176: 125-33.

Ahima RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring) 2006; 14(Suppl 5): 242S–249S.

Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006; 444: 847-53.

Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006; 6: 772-83.

Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011; 121: 2111-7.

Henrichot E, Juge-Aubry CE, Pernin A, Pache JC, Velebit V, et al. Production of chemokines by perivascular adipose tissue: a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol. 2005; 25: 2594-9.

Lago F, Dieguez C, Gomez-Reino J, Gualillo O. Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol. 2007; 3: 716–24.

Campbell K, Foster-Schubert KE, Makar KW, Kratz M, Hagman D, et al. Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss. Cancer Prev Res (Phila). 2013; 6(3): 217-31.

Oñate B, Vilahur G, Camino S, Díez A, Ballesta C, et al. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics. 2013; 14(625): 1-12.

Gabrielson E, Berg K, Anbazhagan R. Functional genomics, gene arrays, and the future of pathology. Mod Pathol. 2001; 14(2): 1294-9.

Pollack JR. A Perspective on DNA Microarrays in Pathology Research and Practice. Am J Pathol. 2007; 171(2): 375-85.

Barquissau V, Ghandour RA, Ailhaud G, Klingenspor M, Langin D, Amri EZ, Pisani DF. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie. 2017; 136: 3-11.

Poudyal H, Brown L. Stearoyl-CoA desaturase: a vital checkpoint in the development and progression of obesity. Endocr Metab Immune Disord Drug Targets. 2011; 11(3): 217-31.

Chambless LE, Folsom AR, Sharrett AR, Sorlie P, Couper D, et al. Coronary heart disease risk prediction in the Atherosclerosis Risk in Communities (ARIC) study. J Clin Epidemiol. 2003; 56: 880-890.

Musaad S, Haynes EN. Biomarkers of Obesity and Subsequent Cardiovascular Events Epidemiol Rev. 2007; 29: 98–114.

Venner A, Lyon M, Doyle-Baker P. Leptin: A potential biomarker for childhood obesity? Clinical Biochemistry. 2006; 39(11): 1047-56.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): pp. 2498-504.

Gerken T, Girard CA, Tung YC. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007; 318(5855): 1469-72.

Widiker S, Karst S, Wagener A, Brockmann GA. High-fat diet leads to a decreased methylation of the Mc4r gene in the obese BFMI and the lean B6 mouse lines. J Appl Genet. 2010; 51(2): 193-7.

Choy JS, Wei S, Lee JY, Tan S, Chu S, et al. DNA methylation increases nucleosome compaction and rigidity. J ethylation pattern of leptin promoter in rats. J Physiol Biochem.Am Chem Soc. 2010; 132: 1782–3.

Plagemann A, Harder T, Brunn M. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. 2009; 587 (pt 20): 4963-76.

Milagro FI, Campion J, Garcia-Diaz DF, Goyenechea E, Paternain L, et al. High fat diet-induced obesity modifies the m 2009; 65: 1-9.

Hirotsu Y, Higashi C, Fukutomi T, Katsuoka F, Tsujita T, et al. Transcription factor NF-E2-related factor 1 impairs glucose metabolism in mice. Genes to Cells. 2014; 19: 650-65.

Berndt J, Kovacs P, Rushke K, Kloting N, Fasshauer M, et al. Fatty acid synthase gene expression in human adipose tissue: association with obesity and type 2 diabetes. Diabetologia. 2007; 50(7): 1472-80.

Makki K, Froguel P, Wolowczuk, I. Adipose Tissue in Obesity-Related Inflammation and Insulin Resistance: Cells, Cytokines, and Chemokines. ISRN Inflammation. 2013; 2013: 139-239.

Sindhu S, Thomas R, Shihab P, Sriraman D, Behbehani K, Ahmad R. Obesity Is a Positive Modulator of IL-6R and IL-6 Expression in the Subcutaneous Adipose Tissue: Significance for Metabolic Inflammation. PLoS One. 2015; 10(7): e0133494.

El-Kadre L, Tinoco A. Interleukin-6 and obesity: the crosstalk between intestine, páncreas and liver. Curr Opin Clin Nutr Metab Care. 2013; 16(5): 564-8.

Bressler J, Pankow J, Coresh J, Boerwinkle E. Interaction between the NOS3 gene and Obesity as a determinant of risk of type 2 Diabetes: The Atherosclerosis risk in communities study. PLoS One. 2013; 8(11): e79466.

Elias I, Franckhauser S, Ferré T, Vilà L, Tafuro S, et al. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance. Diabetes. 2012; 61(7): 1801-13.

Grunnet L, Nilsson E, Ling C, Hansen T, Pedersen O, et al. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue. Diabetes. 2009; 58(10): 2402-08.

Klöting N, Schleinitz D, Ruschke K, Berndt J, Fasshauer M, et al. Inverse relationship between obesity and FTO gene expression in visceral adipose tissue in humans. Diabetologia. 2008; 51(4): 641-7.

Melhorn S, Askren M, Chung W, Kratz M, Bosch T, Tyagi V et al. FTO genotype impacts food intake and corticolimbic activation. Am J Clin Nutr. 2018; 107(2): 145-54.

Cyrus C, Ismail M, Chathoth S, Vatte C, Hasen M, Al Ali A. Analysis of the Impact of Common Polymorphisms of the FTO and MC4R Genes with the Risk of Severe Obesity in Saudi Arabian Population. Genet Test Mol Biomarkers. 2018; 22(3): 170-7.

Fischer J, Kock L, Emmerling C, Vierkotten J, Peters T, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458: 894-8.

Walley A, Jacobson P, Falchi M, Bottolo L, Andersson J, et al. Differential co-expression analysis of obesity-associated networks in human subcutaneous adipose tissue. Intl J Obes. 2012; 36(1): 137-47.

Hegele R. Plasma lipoproteins: genetic influences and clinical implications. Nat Rev Genet. 2009;10(2): 109-21.

Owen O, Kalhan S, Hanson R. The key role of Anaplerosis and Cataplerosis for citric acid cycle function. J Biol Chem. 2002; 227: 30409-12.

Qatanani M, Lazar M. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & Development. 2007; 21: 1443-55.

Cómo citar
Rodríguez, A., Echandía, C., Sánchez, A., Satizábal, J. M., Montoya, J. C., & García Vallejo, F. (2019). Complejidad de la expresión de genes asociados a obesidad en el tejido adiposo humano. Revista Med, 26(1), 14-25.