Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg), mecanismos bioquímicos e ingeniería genética: una revisión

  • Mayra Eleonora Beltrán-Pineda Universidad de Boyacá
  • Alida Marcela Gómez-Rodríguez Universidad de Boyacá.
Palabras clave: Biotecnología, contaminación, genética, microorganismos, plantas metalófitas


Los metales pesados se consideran unos de los contaminantes más tóxicos en el ambiente por tener efectos nocivos a nivel de toda la cadena trófica, en especial el Cd, Cr y Hg son relevantes debido su persistencia y toxicidad. En la actualidad existen diversas técnicas de tipo fisicoquímico utilizadas para el tratamiento de estas sustancias, las cuales han mostrado algunas deficiencias y efectos secundarios a largo plazo. Por esta razón la implementación de otro tipo de tecnologías que involucren seres vivos con capacidades metabólicas especiales han emergido generando resultados prometedores en procesos de biotransformación. Algunos microorganismos y plantas cuentan con diferentes mecanismos bioquímicos para contrarrestar la toxicidad de los metales pesados. En la presente revisión se abordan dichos mecanismos, se nombran algunas especies de organismos destacadas y se hace un esbozo acerca de algunas aproximaciones de ingeniería genética con el objetivo de mejorar las capacidades biorremediadoras de estas especies.


La descarga de datos todavía no está disponible.

Referencias Bibliográficas

• Adelaja O, Keenan H. 2012. Tolerance of TBT-resistant bacteria isolates to methylmercury. Res J Environ Sci, 6(1):1-13.

• Ahuja V, Vohra P, Kashyap D, Tewari R. Adsorption of heavy metals (Pb+2 and Cd+2) by free and immobilized biomass of Acinetobacter anitratus. 2001, 41:275- 279.

• Akpor O, Muchie M. 2010. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. International Journal of the Physical Sciences, 5(12):1807-1817.

• Ali N, Hameed A, Ahmed S. 2009. Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. Journal of hazardous materials, 164:322-328.

• Anning A, Korsah P, Addo P. 2013. Phytoremediation of wastewater with Limnocharis Flava, Thalia Geniculata and Typha Latifolia in constructed wetlands. Internal J. Phytorem, 15 (5):452-464.

• Babich H, Stotzky G. 1977. Effect of cadmium on fungi and on interactions between fungi and bacteria in soil: influence of clay minerals and pH. Appl Environ Microbiol, 33:1059-1066.

• Baghour M, Moreno D, Villora G, Hernández J, Catilla N, Romero L. 2001. Phytoextraction of Cd and Pb and physiological effects in potato plants (Solanum tuberosum var. Spunta): Importance of root temperature. Journal Agric anf Food Chem. Chem, 49:5356-5363.

• Bayramoglu G, Arica M. 2008. Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng Journal, 143(1-3): 133-140.

• Bharti S, Banerjee T. 2013. Bioassay analysis of efficacy of phytoremediation in decontamination of coal mine effluent. Ecotoxicology and Environmental Safety, 92:312–319.

• Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham M and Scheckel K. 2014. Remediation of heavy metal (loid)s contaminated soils-to movilize or to immobilize. Journal of Hazardous Material, 266: 141-166.

• Borker A, Mane A, Saratale G, Pathade G. 2013. Phytoremediation potential of Eichhornia crassipes for the treatment of cadmium in relation with biochemical and water parameters. Emir. J. Food Agric, 25 (6):443-456.

• Borremans B, Hobman J, Provoost A, Brown N, van Derlelie D. 2002. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol, 183:5651-5658.

• Bricker T, Pichtel J, Brown H, Simmons M. 2001. Phytoextraction of Pb and Cd from a superficial soil: effects of amendments and cropping. Journal Environmental Sience and healt Enginerring, 36:1597-1610.

• Buta E, Török A, Csog A, Zongo B, Cantor B, Buta M, Majdik M. 2014. Comparative studies of the phytoextraction capacity of five aquatic plants in heavy metal contaminated water. Not Bot Horti Agrobo, 42(1):173-179.

• Cabral L, Giovanella P, Gianello C, Bento F, Andreazza R, Camargo F. 2012. Isolation and characterization of bacteria from mercury-contaminated sites in Rio Grande do Sul, brazil, and assessment of methylmercury removal capability of a Pseudomonas putida V1 strain. Biodegradation, 24:319-31.

• Campos J, Martínez M, Cervantes C. 1995. Hexavalent chromium reduction by a chromate-resistant Bacillus strain .Anton Leeuw, 68:203-208.

• Cañizares R. 2000. Biosorción de metals pesados mediante el uso de biomasa microbiana. Rev Lat Microb, 42:131-143.

• Carrión C, Ponce-de León C, Cram C, Sommer I, Hernández M, Vanegas C. 2012. Potential use of water hyacinth (Eichhornia crassipes) in Xochimilco for metal phytoremediation. Agroc, 46:609-620.

• Chaney R, Angle J, Broadhurst C, Peters C, Tapero R, Sparks D. 2007. Improved understanding of hyperacumulation yields commercial phytoextraction and phytomining technologies. J Environmental Qual, 36:1429-1443.

• Chatterjee S, Bhattacharjee I, Chandra G. 2010. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175:117–125.

• Chaudhry O, Blom- Zandstra M, Gupta S, Joner E. 2005.Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci. Pollut Res, 12:34-48.

• Chen S, Wilson D. 1997. Genetics engineering of bacteria and their potential for Hg+2 bioremediation. Biodegradation, 8:97-103.

• Choppala G, Bolan N, Kunhikrishnan A, Skinner W, Seshadri B. 2013. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Environ. Sci. Pollut. Res, DOI 10.1007/s1 1356-013 1653-6.

• Cobbeett C. 2000. Phytochelatin biosynthesis and function in heavy-metal detoxification. Plant physiol, 123:825-832.

• Cunningham S, Berti W, Huang J. 1995. Phytoremediation of contaminated soils. Trends Biotechnol, 13:393-397.

• Dash H, Mangwani N, Chakraborty J, Kumari S, Das S. 2013. Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol, 97:561-571.

• Dhal B, Thatoi H, Das N, Pandey B. 2013. Chemical and microbial remediation of hexavalent chromium form contaminated soil and mining/metallurgical solid waste: A review. Journal of hazardous materials, 250-251:272-291.

• Dos Santos M, Lenzi E. 2000. The use of aquatic macrophytes (Eichhornia crassipes) as a biological filter in the treatment of lead contaminated effluents. Environ Technol, 21:15–622.

• Ellis R, Morgan P, Weightman A, Fry J. 2003. Cultivation-dependent and independent approaches for determining bacterial diversity in heavy metal-contaminated soil. Appl Environ Microbiol, 69:3223-3230.

• Favas P, Pratas J, Prasad M. 2012Accumulation of arsenic by aquatic plants in large-scale field conditions: Opportunities for phytoremediation and bioindication. Science of the Total Environment, 433:390-397.

• Garbisu C, Alkorta I. 2003. Basic concept son heavy metal soil bioremediation. European Journal of mineral processing and environmental protection, 3: 58-66.

• Garbisu C, Alkorta, I. 1997. Bioremediation: principles and future. Journal of Clean Technology, Environmental Toxicology and Occupational Medicine, 6: 1-16.

• Gilis A, Khan M, Cornelis P, Meyer J, Mergea M, van der Lelie D. 1996. Siderophore –mediated iron uptake in Alcaligenes eutrophus CH34 and identification of aleB encoding ferric-alcaligin E receptor. J. Bact, 178:5499-5507.

• Ginn B, FEIN J. 2008. The effect of species diversity on metal adsorption onto bacteria. Geochim Cosmochim Acta, 72:939-3948.

• Gupta R, Ahuja P, Khan S, Saxena R, Mohapatra H. 2000.Microbial biosorbents: Meeting challenges of heavy metal pollution in aqueous solution. Curr Sci, 78 (8):967-973.

• Hahn D, Amann R, Ludwig W, Akkermans A, Schleifer K. 1992. Detection of microorganisms in soil after in situ hybridization with rRNA-targeted, fluorescently labeled oligonucleotides. J. Gen. Microbiol, 138:879-887.

• Hobman J, Brown N. 1997. Bacterial mercury-resistance genes. Metal Ion Biol, 34:527-568.

• Hodson R, Dustwan W, Garg R, Moran M. 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl. Environ. Microbiol, 61:4074-4082.

• Ibanez J, Umetsu V. 2002. Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy, 64(2):89-99.

• Jafari, N. 2010. Ecological and socio-economic utilization of water hyacinth (Eichhornia crassipes Mart Solms). Journal of Applied Sciences and Environmental Management, 14 (2): 43-49.

• Jansson J, Björklöf K, Elvang A, Jorgensen K. 2000. Biomarkers for monitoring efficacy of bioremediation by microbials inoculants. Environmental pollution, 107:217 -223.

• January M, Cutright T, Van Keulen H, Wei, R. 2008. Hydroponic phytoremediation of Cd, Cr, Ni As and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals?. Chemosphere, 70:531-537.

• Jing Y, He Z, Yang X. 2007. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J. Zhejiang Univ Sci, 8:192-207.

• Juwarkar A, Nair A, Dubey K, Singh S, Devotta S. 2007. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere, 68:1996-2002.

• Kamnev A, Van der Lelie D. 2000. Chemical and Biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci. Rep, 29:239 - 258.

• Kavaruma V, Esposito E. 2010. Biotechnological strategies applied to the descontamination of soils polluted with heavy metals. Biotechnology advances, 28:61-69.

• Khade S, Adholeya A. Feasible bioremediation through arbusculares mycorrhizal fungi imparting heavy metal tolerance: a retrospective. 2007. Bioremediation Journal, 11:33-43.

• Khan A. 2006. Mycorrhizoremediation- an enhanced form of phytoremediation. J Zhejiang Univ Sci, 7:503-14.

• Kim S, Park C, Koo Y, Yun H. 2003. Biosorption of cadmium and cooper ions by Trichoderma reesei RUT C30. J Ind Eng Chem, 9:403-406.

• Kneer R, Zenk M. 1992. Phytochelatins protect plant enzymes from heavy-metals poisoning. Phytochem, 31:2663.

• Kukier U, Chaney R. 2000Influence of the zinc hyperacumulator. Canad J. soil Sci, 80:581-593.

• Kumar S, Neelima M, Sing S. 2012. Phytorremediation of chromium and cobalt using Pistia sratiotes: A sustainable approach. Proceeding of the international Academy of Ecology and Environmental Sciences, 2(2):136-138.

• Lasat M. 2000. Phytoextraction of metals from contaminated soil: a review of plan/soil/metal interaction and assessment of pertinent agronomic issues. J. Hazard Subst Res, 2: 5-25.

• Lee S, Chung J, Won H, Lee D, Lee. 2012. Removal of the methylmercury and tributyltin (TBT) using marine microorganisms. Bull Environ Contam Toxicol, 88:239-244.

• Li X, Feng M, Syuntaro H. 2000. Mucilage strongly binds aluminum but does not prevent roots from aluminum injury in Zea mays. Physiology Plantarium, 108:152-160.

• Li Y, Chaney R, Brewer E, Roseberg R, Angle J, Baker A, Reeves R, Nelkin J. 2003. Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant soil, 249:107-115.

• Liu W, Marsh T, Cheng H, Forney L. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of gene encoding 16S rRNA. Appl. Environ. Microbiol, 63:4516-4522.

• Lone M, Zhen-li H, Stoffella P, Xiao-e Y. 2014. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives. J Zhejiang Univ Sci B, 9(3):210- 220.

• Long D, Tanga X, Caib K, Chena G, Chena l, Duana D, Zhuc J, Chena Y. 2013 Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. Journal of Hazardous Materials, 256– 257:24-32.

• Loseto L, Siciliano S, Lean D. 2004. Methylmercurio production in high Arctic wetlands. Environ Toxicol Chem, 23:17-23.

• Loutseti S, Danielidis D, Economou-amili A, Katsaros C, Santas R, Santas P. 2009. The application of a micro-algal/bacterial biofilter for the detoxification of cooper and cadmium metal wastes. Biore Technol, 100:2099-2105.

• Lovley D, Lloyd J. 2000. Microbes with a metal for bioremediation. Nature Biotechnology, 18: 600-601.

• Lucho C, Alvaréz M, Beltrán R, Prieto F, Poggi H. 2005. A multivariate analysis of the accumulation and fractionation of major and trace elements in agricultural soils in Hidalgo State, Mexico irrigated with raw wastewater. Environmental international: a journal of environmental science, risk and health, 31(3): 313-323.

• Luo C, Shen Z, Lou L, Li X. 2006. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ. Pollut. 144:862-871.

• Maiti R, Hernández J, González J. lópez D. 2004. Plant based biorremediation and mechanism of heavy metal tolerance of plants. Proc. Indian natan Sci Acad, 70 (1):1-12.

• Mane A, Saratale V, Karadge B, Samant S. 2011. Studies on the effects ofsalinity on growth, polyphenol content and photosynthetic response in Vetiveria zizanioides (L.) Nash. Emir. J. Food Agric, 23:59-70.

• Marrero J, Díaz A, Coto O. 2010. Mecanismos moleculares de resistencia a metales pesados en las bacterias y sus aplicaciones en la Biorremediación. Revista CENIC Ciencias Biológicas, 41 (1): 67-78.

• McGrath S, Zhao F, Lombi E. 2001. Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil, 232:207-214.

• Miller M, Bassler B. 2006. Quorum sensing in bacteria. Annu Rev Microbiol, 55:165-199.

• Muyzer G, de Waal E, Uitterlinden A. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol, 59:695-700.

• Navari-izzo F, Quartacci M. 2011. Phytoremediation of metals. Minerva Biotechnol, 13:73-83.

• Nessner V, Esposito E. 2010. Biotechnological strategies applied to the decontamination of soil polluted with heavy metals. Biotechnology advances, 28:61-89.

• Nies D. Microbial heavy metal resistance. 1999. Applied Microbiology Biotechnology, 51: 730-750.

• Padmavathiamma P, Li L. 2007. Phytoremediation Technology: Hyperaccumulation Metals in Plants. Water, Air, & Soil Pollution, 184:105-126.

• Paisio C, González P, Talano M, Agostini E. 2012. Remediación biológica de Mercurio: Recientes avancesRev Latinoam Biotecnol Amb Algal, 3(2):119-146.

• Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G. 2014. Use of phytorremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, 5:65-75.

• Pepi M, Gaggi C, Bernardirni E, Focardi G, Lobianco A, Ruta M, Nicolardi V, Volterrani M, Gasperini S, Trinchera G, Renzi P, Gabellini M, Focardi S. 2011. Mercury resistant bacterial strains Pseudomonas sp and Psychrobacter sp isolated form sediments of Orbetello Lagoon (Italy) and their possible use in bioremediation processes. Int Biodet Biodeg 65(1):85-91.

• Prasad M, Freitas H. 2003. Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol 93(1):285-321.

• Rajendran P, Muthukrishnan J, Gunasekaran P. 2003. Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41: 935-944.

• Ramteke P. 2000. Biosorption of Nickel (II) by Pseudomonas stutzeri. J Environ Biol, 21:219-221.

• Rascio N, Navari-izzo F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180:169–181.

• Raspanti E, Cacciola S, Gotor C, Romero L, Garcia I. 2009. Implications of cyste-inemetabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species. Chem, 76:48-54.

• Roane T, Pepper I. 2009. Microorganisms and metal pollution. Environmental Microbiology.1 .ed. London (England): Academic press. p 632.

• Saleh H. 2012. Water hyacinth for phytoremediation of radioactive waste simulate contaminated with cesium and cobalt radionuclides. Nucl Eng Des, 242:425–432.

• Salt D, Blaylock m. Kumar N, Dushenkov V, Ensley B, Chet I, Raskin I. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol, 13(5):468-74.

• Samantaray S, Rout G, Das P. 2001. Induction, selection and characterization of Cr and Ni tolerant cell lines of Echinochloa colona (L). Link in vitro. J Plants Physiol 158:1281-1290.

• Sambandan K, Kannan K, Raman N. 1992. Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu, India. J. Environ. Biol. 13:159–167.

• Samuelson P, Wernerus H, Svedberg M, Stahl S. 2000. Sthaphylococcal surface display of metal binding polyhistydiyl peptides. Appl Environ Microbiol, 66:1092-1096.

• Shukla O, Rai U, Dubey S, Mishra K. 2006. Bacterial resistance: A tool for remediation of toxic metal pollutants. Environ News, 12:2-4.

• Sinha A, Pant H, Khare S. 2012. Mercury bioremediation by mercury accumulating Enterobacter sp cells and its alginate immobilized application. Biodegradation, 23(1):25-34.

• Solisio C, Lodi A, Soletto D, Converti A. 2007. Cadmium Biosorption on Spirulina platensis biomass. Bioresource Technol, 99:5933-5937.

• Soto C, Gutiérrez S, Rey A, González, E. 2010. Biotransformación de metales pesados presentes en lodos ribereños de los ríos Bogotá y Tunjuelo, NOVA 8:195-205.

• Swain G, Adhikari P, Mohanty. 2014. Phytoremediation of Copper and Cadmium from Water Using Water Hyacinth, Eichhornia crassipes. Internal J. Agric Sci and Technol. 2(1):1-7.

• Üçüncü E, Tunca E, Fikirdeşici S, Özkan D, Altindaǧ. 2013. Phytoremediation of Cu, Cr and Pb Mixtures by Lemna minor. Bull Environ Contam Toxicol, 91:600–604.

• Ullrich A, Tanton T, Abdrashitova S. 2001. Mercury in aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol, 31: 241-293.

• Valls M, Atrian S, De Lorenzo V, Fernandéz L. 2000. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for inmovilization of heavy metals in soil. Nat Biotechnol 18: 661-665.

• Vasudevan P, Padmavathy V, Tewari V, Dhingra S. 2001. Biosorption of heavy metals. Journal Science and Industrial Research, 60: 112-120.

• Wang P, Mori T, Komori K, Sasatsu K, Toda K, Phtake H. 1989. Isolation and characterization of and Enterobacter cloacae strains that reduces hexavalent chromium under anaerobic conditions. App. Environ. Microbiol 55:1665-1669.

• Weerasinghe A, Aruyawnasa S, Weerasooriya R. 2008. Phytoremediation potential of Ipomea aquatica for Cr (IV) mitigation. Chemosphere, 70:521-524.

• Wiatrowski H, Ward P, Barkay, T. 2006. Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol, 40:6690-6696.

• Wu G, Kang H, Zhang X, Shao H, Chu L, Chengjiang R. 2010. A critical review on the bio-removal of hazardous heavy metal from contaminated soil: Issues, progress, eco-environmental concerns and opportunities. Journal. Hazardous Materials, 174:1-8.

• Zheng Y, Fang X, Ye Z, Li Y, Cai W. 2008. Biosorption of Cu (II) on extracelular polymers from Bacillus sp. F19. J. Environmental Science, 119:1288-1293.

• Zhu Y, Zayed A, Qian J, de Souza M, Terry N. 1999. Phytoremediation of trace elements by wetland plants: II. Water Hyacinth. J. Environ. Qual, 28:339-344.

• Zimmer D, Baum C, Leinweber P, Hrynkiewicz K, Missner R. 2009. Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. Int J Phytoremediat, 11:200-213.

Cómo citar
Beltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de metales pesados cadmio (Cd), cromo (Cr) y mercurio (Hg), mecanismos bioquímicos e ingeniería genética: una revisión. Revista Facultad De Ciencias Básicas, 12(2), 172-197.