Mechanical Assessment of a Warm Mix Asphalt (WMA) Using Additives Viscosity Modifiers

  • Carlos José Slebi Acevedo Julio Garavito Colombian School of Engineering
  • Daniel Alberto Zuluaga Astudillo School of Military Engineers
  • Rafael Gutiérrez Melgarejo Florida International University, Miami
Keywords: Additives, Sustainability, Viscosity, Warm Mix Asphalt WMA

Abstract

Warm Mix Asphalt (WMA) technology has been a driving force in the asphalt industry, as it contributes to minimizing greenhouse gas emissions in the environment, aiding in the reduction of global warming and carbon footprint. In this research, the impact of two WMA additives on the characteristics of asphalt binder and asphalt mixture was experimentally assessed. Among the results, a notable impact of additives was observed on the viscosity property of the asphalt binder. Both additives reduce viscosity as the temperature in the mixture increased. Concerning asphalt mixtures, the addition of wma additives tended to increase bulk density, voids filled with asphalt, Marshall stability, and reduce air voids content. The incorporation of these additives can lead to a reduction of 0.2 to 0.4% in the optimal bitumen content.

Author Biographies

Carlos José Slebi Acevedo, Julio Garavito Colombian School of Engineering

Ph. D. in Civil Engineering (emphasis on pavements), Master’s in Civil Engineering (emphasis on geotechnics),Departament of Civil Engineering Geotechnical Studies Center Julio Garavito Colombian School of Engineering, Bogota, Colombia.

Daniel Alberto Zuluaga Astudillo, School of Military Engineers

Master’s in Civil Engineering (Emphasis on Road Infrastructure), Master’s in Civil Engineering (Emphasis
on Geotechnics). School of Military Engineers, Bogota, Colombia.

Rafael Gutiérrez Melgarejo, Florida International University, Miami

Master’s in Civil Engineering, Department of Civil and Environmental Engineering Florida International
University, Miami, USA.

Downloads

Download data is not yet available.

Author Biographies

Carlos José Slebi Acevedo, Julio Garavito Colombian School of Engineering

Ph. D. in Civil Engineering (emphasis on pavements), Master’s in Civil Engineering (emphasis on geotechnics),Departament of Civil Engineering Geotechnical Studies Center Julio Garavito Colombian School of Engineering, Bogota, Colombia.

Daniel Alberto Zuluaga Astudillo, School of Military Engineers

Master’s in Civil Engineering (Emphasis on Road Infrastructure), Master’s in Civil Engineering (Emphasis
on Geotechnics). School of Military Engineers, Bogota, Colombia.

Rafael Gutiérrez Melgarejo, Florida International University, Miami

Master’s in Civil Engineering, Department of Civil and Environmental Engineering Florida International
University, Miami, USA.

References

P. Kushwaha and A. S. Chauhan, "Pavement design and construction using warm mix asphalt: A bibliometric overview," Mater Today Proc, Mar. 2023, doi: 10.1016/j.matpr.2023.03.040.

M. Sukhija and N. Saboo, "A comprehensive review of warm mix asphalt mixtures-laboratory to field," Constr Build Mater, vol. 274, p. 121781, Mar. 2021, https://doi.org/10.1016/j.conbuildmat.2020.121781

M. J. Amirkhani, M. Fakhri, and A. Amirkhani, "Evaluating the use of different fillers and Kaowax additive in warm mix asphalt mixtures," Case Studies in Construction Materials, p. e02489, Dec. 2023,https://doi.org/10.1016/j.cscm.2023.e02489

D. Vaitkus, A., A. Čygas, Laurinavičius, and Z. Perveneckas, "Analysis and Evaluation of Possibilities for the Use of Warm Mix Asphalt in Lithuania," The Baltic Journal of Road and Bridge Engineering, vol. 4, no. 2, pp. 80-86, 2009,https://doi.org/10.3846/1822-427X.2009.4.80-86

G. Zhaoa and P. Guo, "Workability of Sasobit Warm Mixture Asphalt," Procedia engineering, vol. 16, pp. 1230-1236, 2012.https://doi.org/10.1016/j.egypro.2012.01.196

H. M. R. D. Silva, J. R. M. Oliveira, C. I. G. Ferreira, and P. A. A. Pereira, "Assessment of the Performance of Warm Mix Asphalts in Road Pavements," International Journal of Pavement Research and Technology, vol. 3, no. 3, pp. 119-127, 2010.

D. Newcomb, "Warm mix: the wave of the future?," HMAT: Hot Mix Asphalt Technology, vol. 10, no.4

T. Blankendaal, P. Schuur, and H. Voordijk, "Reducing the Environmental Impact of Concrete and Asphalt: A Scenario Approach," Journal of Cleaner Production, vol. 66, pp. 27-36, 2014, doi: https://doi.org/10.1016/j.jclepro.2013.10.012.

Y. Babangida Attahiru, A. Mohamed, A. Eltwati, A. A. Burga, A. Ibrahim, and A. M. Nabade, "Effect of waste cooking oil on warm mix asphalt block pavement - A comprehensive review," Physics and Chemistry of the Earth, Parts A/B/C, vol. 129, p. 103310, Feb. 2023, https://doi.org/10.1016/j.pce.2022.103310

Z. A. Xie, W. B. Fan, L. B. Wang, and J. Shen, "The Effectiviness of Warm Mix Asphalt (WMA) Additives Affected by the Type of Aggregate and Binder," International Journal of Pavement Research and Technology, vol. 6, no. 5, pp. 554-561, 2013.

X. Yang et al., "Environmental and Mechanical Performance of Crumb Rubber Modified Warm Mix Asphalt Using Evotherm," Journal of Cleaner Production, vol. 159, pp. 346-358, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.04.168.

X. Wang, H., P. Liu, Apostolidis, and T. Scarpas, "Review of Warm Mix Rubberized Asphalt Concrete: Towards a Sustainable Paving Technology," Journal of Cleaner Production, vol. 177, pp. 302-314, 2018,https://doi.org/10.1016/j.jclepro.2017.12.245

C. Akisetty, F. Xiao, T. Gandhi, and S. Amirkhanian, "Estimating Correlations between Rheological and Engineering Properties of Rubberized Asphalt Concrete Mixtures Containing Warm Mix Asphalt Additive," Constr Build Mater, vol. 25, no. 2, pp. 950-956, 2011, https://doi.org/10.1016/j.conbuildmat.2010.06.087.

H. Rondón and F. Reyes, Pavimentos, Materiales, Construcción y Diseño. Bogotá. Colombia., 2015.

V. Kumar and E. Coleri, "Effects of finer gradation, temperature, warm mix additives, and compaction methods on density and performance of asphalt mixtures," Constr Build Mater, vol. 394, p. 132226, Aug. 2023,https://doi.org/10.1016/j.conbuildmat.2023.132226

A. M. S. Maidanova, S. N. Baranov, and N. V. Ivanov, "Influence of Natural Additives and Those Synthesized by the Fischer-Tropsch Method on the Properties of Petroleum Bitumen and Quality of Floated Asphalt," Coke and Chemistry, vol. 54, no. 1, pp. 26-31, 2011.https://doi.org/10.3103/S1068364X11010066

M. R. Mohd Hasan et al., "Effects of diluted methanol and water as foaming agents on the performance of latex foamed warm asphalt mixtures," Journal of Traffic and Transportation Engineering (English Edition), vol. 10, no. 3, pp. 413-426, Jun. 2023, https://doi.org/10.1016/j.jtte.2021.07.007

P. Caputo et al., "The Role of Additives in Warm Mix Asphalt Technology: An Insight into Their Mechanisms of Improving an Emerging Technology," Nanomaterials, vol. 10, no. 6, pp. 1-17, 2020, https://doi.org/10.3390/nano10061202

How to Cite
Slebi Acevedo, C. J., Zuluaga Astudillo, D. A., & Gutiérrez Melgarejo, R. (2023). Mechanical Assessment of a Warm Mix Asphalt (WMA) Using Additives Viscosity Modifiers. Ciencia E Ingenieria Neogranadina, 33(2), 119–130. https://doi.org/10.18359/rcin.6970
Published
2023-12-27
Section
ARTICLES

Altmetric

Crossref Cited-by logo
QR Code

Some similar items: