Validación experimental de un método analítico para el monitoreo de movimientos de tierra en masa mediante sensores de fibra óptica

Palabras clave: sensores fotónicos, rejillas de Bragg, riesgo, movimientos en masa, monitoreo, deslizamiento

Resumen

En este trabajo se presenta la implementación de un sistema para el monitoreo de movimientos de tierra en masa conformado por un prototipo de perfil del suelo, una red de sensores fotónicos basados en rejillas de Bragg y un sistema de interrogación. El prototipo del suelo fue reproducido mediante materiales poliméricos que representan las capas del suelo, generalmente involucradas en eventos de deslizamientos de tierra. La red de sensores fue conformada por inclinómetros compuestos por barras cilíndricas de fibra de vidrio instrumentadas con sensores fotónicos basados en rejillas de Bragg, distribuidos de forma uniforme sobre el prototipo del suelo. El sistema de interrogación se compuso en sí mismo por un dispositivo interrogador empleado para capturar la información arrojada por los sensores en forma de desviaciones de la longitud de onda de Bragg, cuyos valores fueron relacionados posteriormente con las deformaciones de los inclinómetros mediante un algoritmo de procesamiento de señales, para arrojar resultados de la detección de movimientos. Los resultados experimentales muestran que el algoritmo analítico implementado puede generar un vector que indica la dirección de un eventual movimiento de tierra en masa a partir de la medida de deformaciones en los inclinómetros ópticos implementados con un error promedio de 3°. De acuerdo con los bajos niveles de error obtenidos, se demuestra que la propuesta de red de sensores fotónicos es una herramienta prometedora para el monitoreo de deslizamientos de tierra orientado a la disminución de los efectos socioeconómicos que causan los desastres naturales.

Biografía del autor/a

Dúmar Hidalgo-Monsalve, Universidad Francisco de Paula Santander

Ingeniero electrónico. Universidad Francisco de Paula Santander, San José de Cúcuta, Colombia.

Jesús Álvarez-Guerrero, Universidad Libre- Seccional Cúcuta,

Candidato a doctor en ingeniería, magíster en ingeniería, magíster en TIC, ingeniero electrónico. Universidad Libre-Seccional Cúcuta, San José de Cúcuta, Colombia.

Julián Sierra-Pérez, Universidad Pontificia Bolivariana

Doctor en ingeniería aeroespacial, magíster en ingeniería aeroespacial, magíster en materiales compuestos,
magíster en ingeniería área de nuevos materiales, especialización en ingeniería aeronáutica, ingeniero mecánico.Universidad Pontificia Bolivariana, Medellín, Colombia.

Ferney Amaya-Fernández, Universidad Pontificia Bolivariana

Doctorado en ingeniería, magíster en ingeniería, ingeniero electrónico. Universidad Pontificia Bolivariana, Medellín,Colombia.

Jorge Herrera-Rubio, Universidad de Pamplona

Doctor en gestión de la ciencia y la tecnología, magíster en electrónica, especialista en telecomunicaciones, especialización en interventoría de proyectos de telecomunicaciones, ingeniero electrónico. Universidad de Pamplona, San José de Cúcuta, Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Dúmar Hidalgo-Monsalve, Universidad Francisco de Paula Santander

Ingeniero electrónico. Universidad Francisco de Paula Santander, San José de Cúcuta, Colombia.

Jesús Álvarez-Guerrero, Universidad Libre- Seccional Cúcuta,

Candidato a doctor en ingeniería, magíster en ingeniería, magíster en TIC, ingeniero electrónico. Universidad Libre-Seccional Cúcuta, San José de Cúcuta, Colombia.

Julián Sierra-Pérez, Universidad Pontificia Bolivariana

Doctor en ingeniería aeroespacial, magíster en ingeniería aeroespacial, magíster en materiales compuestos,
magíster en ingeniería área de nuevos materiales, especialización en ingeniería aeronáutica, ingeniero mecánico.Universidad Pontificia Bolivariana, Medellín, Colombia.

Ferney Amaya-Fernández, Universidad Pontificia Bolivariana

Doctorado en ingeniería, magíster en ingeniería, ingeniero electrónico. Universidad Pontificia Bolivariana, Medellín,Colombia.

Jorge Herrera-Rubio, Universidad de Pamplona

Doctor en gestión de la ciencia y la tecnología, magíster en electrónica, especialista en telecomunicaciones, especialización en interventoría de proyectos de telecomunicaciones, ingeniero electrónico. Universidad de Pamplona, San José de Cúcuta, Colombia.

Referencias bibliográficas

M. Marulanda, Atlas de Riesgo de Colombia: Revelando los desastres latentes, Bogotá: Unidad Nacional para la Gestión del Riesgo de Desastres, 2018.

L. Mejía, Índice municipal de riesgo de desastres de Colombia, Bogotá: Departamento Nacional de Planeación, 2018.

R. Puyana, La agenda de cambio climático en Colombia y el rol del financiamiento, Bogotá: Departamento Nacional de Planeación, 2018.

R. Suárez, Análisis del gasto público y privado e institucionalidad para el cambio climático-Caso de Colombia, Bogotá: Comité de Gestión Financiera del Sisclima, 2018.

UNGRD, Colombia, un país con múltiples amenazas geológicas, pero ¿por qué sucede esto?, en la UNGRD se lo explicamos, Bogotá: Unidad Nacional para la Gestión del Riesgo de Desastres, 2020.

R. Luis et al., "Comparación de metodologías para la estimación de riesgos de movimientos en masa", Revista Técnica de Maquinaria y Obra Pública, vol. 71, 2018. [Internet]. Disponible en https://www.obrasurbanas.es/metodologias-riesgos-movimientos-masas/

J. Vásquez et al. "La avenida torrencial de Mocoa, Putumayo ¿ejemplo de una retrospectiva sin punto final en la gestión del riesgo de desastres detonados por eventos naturales?", Revista de Derecho, vol. 50, 2018. https://doi.org/10.14482/dere.50.0007

DNP, Sistema de monitoreo, reporte y verificación de financiamiento climático, Bogotá: Departamento Nacional de Planeación, 2018.

C.-Y. Tsou et al., "Topographic and Geologic Controls on Landslides Induced by the 2015 Gorkha Earthquake and its Aftershocks: an Example from the Trishuli Valley, central Nepal", Landslides, vol. 15, n.° 5, 2018, pp. 953-965. https://doi.org/10.1007/s10346-017-0913-9

R. Kenner et al., "Monitoring Mass Movements using Georeferenced Time-Lapse Photography: Ritigraben Rock Glacier, Western Swiss Alps", Cold Regions Science and Technology, vol. 145, 2018, pp. 127-134, https://doi.org/10.1016/j.coldregions.2017.10.018

B. Andò et al., "A Magnetic Fluid-Based Inclinometer Embedding an Optical Readout Strategy: Modeling and Characterization", IEEE Transactions on Instrumentation and Measurement, vol. 69, n.° 8, 2020, pp. 5922-5929, https://doi.org/10.1109/TIM.2020.2964937

P. Confuorto et al., "Monitoring of Remedial works Performance on Landslide-Affected Areas through Ground- And Satellite-Based Techniques", Catena, vol. 178, February, 2019, pp. 77-89, https://doi.org/10.1016/j.catena.2019.03.005

N. Casagli et al., "Landslide Mapping and Monitoring by Using Radar and Optical Remote Sensing: Examples from the EC-FP7 Project SAFER", Remote Sensing Applications: Society and Environment, vol. 4, n.° July, 2016, pp. 92-108. https://doi.org/10.1016/j.rsase.2016.07.001

S. R. Suryawanshi and U. L. Deshpande, "Review of Risk Management for Landslide Forecasting, Monitoring and Prediction using Wireless Sensors Network", 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1-6, https://doi.org/10.1109/ICIIECS.2017.8276113

A. A. Kelam et al., "Utilization of Optical Fiber System for Mass Movement Monitoring", Disaster Science and Engineering, vol. 2, n.°1, 2016, pp. 19-24.

M. Stähli et al., "Monitoring and Prediction in Early Warning Systems for Rapid Mass Movements", Natural Hazards and Earth System Sciences, vol. 15, n.° 4, 2015 pp. 905-917, https://doi.org/10.5194/nhess-15-905-2015

Y. Zheng et al., "Experimental Research on a Novel Optic Fiber Sensor based on OTDR for Landslide Monitoring", Measurement: Journal of the International Measurement Confederation, vol. 148, 2019, p. 106926, https://doi.org/10.1016/j.measurement.2019.106926

L. Schenato et al., "Distributed Optical Fibre Sensing for Early Detection of Shallow Landslides Triggering", Scientific Reports, vol. 7, n.° 14686, 2017, pp. 1-7, https://doi.org/10.1038/s41598-017-12610-1

C. Y. Hong et al., "Recent Progress of using Brillouin Distributed Fiber Optic Sensors for Geotechnical Health Monitoring", Sensors and Actuators, A: Physical, vol. 258, 2017, pp. 131-145, https://doi.org/10.1016/j.sna.2017.03.017

D. Sheng Xu et al., "A New Measurement Approach for Deflection Monitoring of Large-Scale Bored Piles using Distributed Fiber Sensing Technology", Measurement, vol. 117, 2018, pp. 444-454, https://doi.org/10.1016/j.measurement.2017.12.032

C. Carmona-Rodriguez et al., "Red de sensores de fibra óptica para la prevención de desastres", Revista investigaciones aplicadas, vol. 9, n.° 1, 2015, pp. 30-36, https://doi.org/10.18566/ria.v09n01.a06

T. Li et al., "A Diaphragm Type Fiber Bragg Grating Vibration Sensor Based on Transverse Property of Optical Fiber with Temperature Compensation", IEEE Sensors Journal, vol. 17, n.° 4, 2017, pp. 1021-1029, doi: 10.1109/JSEN.2016.2641931[23] G. Allwood et al. "Fiber Bragg Grating Sensors for Mainstream Industrial Processes", Electronics, vol. 6, no. 4, pp. 1-19. https://doi.org/10.3390/electronics6040092

O. Hungr et al., "The Varnes classification of landslide types, an update", Landslides, vol. 11, n.° 2, 2014, 2017, pp. 167-194, https://doi.org/10.1007/s10346-013-0436-y

A. Guerra et al., "Slope Processes, Mass Movement and Soil Erosion: A Review", Pedosphere, vol. 27, n.°. 1, 2017, pp. 27-41, https://doi.org/10.1016/S1002-0160(17)60294-7

W. Guo et al., "Experimental Study of Shallow Mass Movements on Gully Slopes and Associated Sediment under Rainfall on the Chinese Loess Plateau", Geomorphology, vol. 350, n.° 106919, 2020, pp. 1-9. https://doi.org/10.1016/j.geomorph.2019.106919

D. N. Pane et al., Movimientos en masa en la Región Andina: una guía para la evaluación de amenazas. Buenos Aires, Proyecto multinacional andino: geociencias para las comunidades andinas, 2007.

W. Guo et al., "Rainfall-triggered Mass Movements on Steep Loess Slopes and their Entrainment and Distribution", Catena, vol. 183, n.° 104238, 2019, pp. 1-11, https://doi.org/10.1016/j.catena.2019.104238

A. Maltman, The Geological Deformation of Sediments. United Kingdom: Springer Science+Business Media Dordrecht, 1994. https://doi.org/10.1007/978-94-011-0731-0

G. Shanmugam, Deep-Water Processes and Deposits. Arlington, TX, USA: Elsevier, 2020. doi: https://doi.org/10.1016/B978-0-12-409548-9.12541-2

P. Bobrowsky y B. Marker, Encyclopedia of Engineering Geology. Switzerland: Springer International Publishing AG, part of Springer Nature 2018, 2018.

J. Jiménez. "Análisis de la susceptibilidad a los movimientos de ladera mediante un SIG en la cuenca vertiente al embalse de Rules, Granada", Universidad de Granada, España, 2005.

V. Meyer et al., Costs of Natural Hazards - A Synthesis. Alemania: Conhaz Consortium, 2012.

M. Hameed y S. Obayya, Computational Photonic Sensors. Switzerland: Springer International Publishing AG, part of Springer Nature 2019, 2018. https://doi.org/10.1007/978-3-319-76556-3

N. Kumar y B. Suthar. Advances in Photonic Crystals and Devices. London: CRC Press, 2020. https://doi.org/10.1201/9781351029421

R. Kashyap, Fiber Bragg Gratings. Burlington, MA, USA: Elsevier Inc., 2010. https://doi.org/10.1016/B978-0-12-372579-0.00007-7

E. Udd y W. Spillman. Field Guide to Fiber Optic Sensors. Washington, USA: SPIE Press, 2014. https://doi.org/10.1117/3.1002803

C. E. Campanella et al., "Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications", Sensors, vol. 18, n.° 9, 2018, pp. 1-27, https://doi.org/10.3390/s18093115

T. Kori et al., "A Study on Fiber Bragg Gratings and Its Recent Applications", Innovative Mobile and Internet Services in Ubiquitous Computing. IMIS 2019. Advances in Intelligent Systems and Computing, vol. 994, 2020, pp. 880-889, https://doi.org/10.1007/978-3-030-22263-5_84

D. Meena y M. L. Meena, "Design and Analysis of Novel Dispersion Compensating Model with Chirp Fiber Bragg Grating for Long-haul transmission system", Lecture Notes in Electrical Engineering, vol. 546, 2020, pp. 29-36, https://doi.org/10.1007/978-981-13-6159-3_4

Y. Kuang et al., "Packaging and Temperature Compensation of Fiber Bragg Grating for Strain Sensing: A Survey", Photonic Sensors, vol. 8, 2018, pp. 320-331. https://doi.org/10.1007/s13320-018-0504-y

L. Bucciarelli, Engineering Mechanics for Structures. Mineola, NY, USA: Courier Dover Publications, 2009.

R. Serway y J. Jewett, Physics for Scientists and Engineers. Boston, MA, USA: Cengage, 2019.

K. Yuksel et al., "Implementation of a Mobile Platform based on Fiber Bragg Grating Sensors for Automotive Traffic Monitoring", Sensors, vol. 20, n.° 6, 2020, pp. 1-10, https://doi.org/10.3390/s20061567

T. Li et al., "A Fiber Bragg Grating Sensing-Based Micro-Vibration Sensor and its Application", Sensors (Switzerland), vol. 16, n.° 4, 2016, pp. 1-14, https://doi.org/10.3390/s16040547

C. Waltermann et al., "Multiple Off-Axis Fiber Bragg Gratings for 3D Shape Sensing", Applied Optics, vol. 57, n.° 28, 2018, pp. 8125-8133, https://doi.org/10.1364/AO.57.008125

Z. F. Wang et al., "Development and Application of Smart Geogrid Embedded with Fiber Bragg Grating Sensors", Journal of Sensors, vol. 2015, n.° 108209, 2018, pp. 1-10, https://doi.org/10.1155/2015/108209

G. Álvarez-Botero et al., "Optical Sensing using fiber Bragg Gratings: Fundamentals and Applications", IEEE Instrumentation and Measurement Magazine, vol. 20, n.° 2, 2018, pp. 33-38, https://doi.org/10.1109/MIM.2017.7919131

Cómo citar
Hidalgo-Monsalve, D., Álvarez-Guerrero, J., Sierra-Pérez, J. ., Amaya-Fernández, F., & Herrera-Rubio, J. (2022). Validación experimental de un método analítico para el monitoreo de movimientos de tierra en masa mediante sensores de fibra óptica. Ciencia E Ingeniería Neogranadina, 32(2), 43–60. https://doi.org/10.18359/rcin.5673
Publicado
2022-12-26
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code

Algunos artículos similares: