Modelos de optimización por metas para el cálculo de estimadores en regresión múltiple

  • Héctor Andrés López Ospina Universidad de Chile
  • Rafael David López Ospina Universidad Nacional de Colombia
Palabras clave: modelos de regresión múltiple, programación por metas, regresión cuantílica, optimización minimax, regresión restringida

Resumen

Este trabajo introductorio presenta y describe diversos modelos de regresión múltiple y su respectiva formulación como un problema de optimización por metas. Se describen los modelos de regresión mediana, regresión mediana ponderada, regresión cuantílica, regresión cuantílica ponderada y formulación minimax. Además, se describe la formulación dual de estos modelos y se presentan algunos ejemplos sencillos se presentan para explicar los conceptos desarrollados y las aplicaciones de dichos modelos en ingeniería y ciencias.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Cade B., Noon B., (2003) "A Gentle Introduction to Quantile Regression for Ecologists", Frontiers in Ecology and the Environment 1(8), 412-420. http://dx.doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2

Cade B., Terrell J., y Schroeder R.; (1999) Estimating effects of limiting factors with regression quantiles, Ecology, 80, 311-323. http://dx.doi.org/10.1890/0012-9658(1999)080[0311:EEOLFW]2.0.CO;2

Chernozhukov, V. and L. Umantsev. 2001. "Conditional Value-at-Risk: Aspects of Modeling and Estimation." Empirical Economics. March, 26:1, pp. 271–92.

Eide E., y Showalter M., (1998) The effect of school quality on student performance: a quantile regression approach, Economics Letters, 58, 345-50. http://dx.doi.org/10.1016/S0165-1765(97)00286-3

Engle Robert and Simone Manganelli.; (1999) "CaViaR: Conditional Autoregressive Value at Risk by Regression Quantiles." University of California, San Diego, Department of Economics Working Paper.

Fitzenberger B., Koenker R., Machado J., A.F. (Eds.); (2002) Economic Applications of Quantile Regression. Series: Studies in Empirical Economics . VI, 324 p. 74 illus., Hardcover.

Knight K., Bassett G., y Mo-Yin S. Tam.; (2002) "Comparing Quantile Estimators for the Linear Model." Preprint.

Koenker R., (2005) Quantile Regression, Econometric Society Monographs, Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511754098

Koenker R., Basset G.; (1978) Regression Quantiles. Econometrica 46, 33-50. http://dx.doi.org/10.2307/1913643

Koenker R., Geiling O.; (2001) 'Reappraising medfly longetivity: A quantile regression approach', Journal of American Statistic Association 96, 458–468. http://dx.doi.org/10.1198/016214501753168172

Koenker R., Machado J.; (1999) 'Goodness of fit and related inference processes for quantile regression', Journal of the American Statistical Association 94, 1296–1310. http://dx.doi.org/10.1080/01621459.1999.10473882

López R., (2007) La brecha de la distribución salarial en Colombia, un efecto de discriminación?. Monografía de pregrado. Carrera de Estadística. Universidad Nacional de Colombia.

López H.; (2006) Introducción a GAMS y su aplicación en la solución de modelos matemáticos de optimización, in 'Memorias del XXII Coloquio distrital de Matemáticas y Estadística', Universidad Nacional de Colombia, Bogotá.

López H., Mora H.; (2007) Cálculo de los estimadores de regresión cuantílica lineal por medio del método ACCPM. Revista Colombiana de Estadística 30 (1). 53 a 68.

Ma L., Koenker R.; (2003) Quantile regression methods for recursive structural models, Technical report.

Manning W., Blumberg L., y Moulton L.; (1995) The demand for alcohol: the differential response to price, Journal of Health Economics, 14, 123-148. http://dx.doi.org/10.1016/0167-6296(94)00042-3

McKeague I., Subramanian S., y Sun Y. Q.; (2002) Median regression and the missing information principle, Journal of Nonparametric Statistics 13, 709-727. http://dx.doi.org/10.1080/10485250108832873

Montgomery Peck, y Vining; (2004) Al análisis de regresión lineal. 3ª edición. Editorial CECSA.

Poterba James, and Kim Rueben; (1995) "The Distribution of Public Sector Wage Premia: New Evidence Using Quantile Regression Methods." NBER Working Paper No. 4734.

Powell J.L.; (1986) 'Censored regression quantiles', Journal of Econometrics 32, 143– 55. http://dx.doi.org/10.1016/0304-4076(86)90016-3

Powell J.; (2002) Notes On Median and Quantile Regression. Department of Economics.University of California, Berkeley.

R. Development Core Team (2006), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. *http://www.R-project.org.

Särndal C. Swensson B., Wretman J., Model Assisted Survey Sampling. Springer Series in Statistics. Segunda Edición. 2003.

Smith R., Mesa O., Dyner I., Jaramillo P., Poveda G., Valencia D.; (2000) Decisiones con múltiples objetivos e incertidumbre. 2a edición. Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín.

Sosa Escudero W.; (2006) Perspectivas y Avances Recientes en Regresion por Cuantiles, en Marchionni, M. (editora), Ahumada, H., Jorrat, J., Navarro, M. y Sosa Escudero, W., Progresos en Econometría, Temas Grupo Editorial, Buenos Aires.

Toshiyuki S., Yih-Long C.; (1989) Goal Programming Approach for Regression Median. Decision Sciences 20 (4), 700–713. http://dx.doi.org/10.1111/j.1540-5915.1989.tb01414.x

Winston W., Investigación de operaciones: aplicaciones y algoritmos. Séptima edición. Editorial Thomson. 2005.

Wooldridge, J.M.; (2002) Econometric Analysis of Cross Section and Panel Data, The MIT Press, Cambridge, Massachusetts.

Zarate, H.; (2002) Cambios en la estructura salarial: una historia desde la regresión cuantílica. CEMLA. Colombia.

Dutta D., y Murthy S.; (2010) MULTI-CHOICE GOAL PROGRAMMING APPROACH FOR A FUZZY TRANSPORTATION PROBLEM. International Journal of Research and Reviews in Applied Sciences. Volume 2.

Makui A., Alinezhad A., Kiani Mavi R., Zohrehbandian M.; (2008) A Goal Programming Method for Finding Common Weights in DEA with an Improved Discriminating Power for Efficiency. Journal of Industrial and Systems Engineering. Vol. 1, No. 4, pp 293-303.

Mezghani M., Rebai A., Dammak A., Loukil T.; (2009) A Goal Programming model for Aggregate Production Planning problem. International Journal of Operational Research. Vol. 4, No.1 pp. 23 – 3. http://dx.doi.org/10.1504/IJOR.2009.021616

Güneş y Umarosman.; (2005) FUZZY GOAL PROGRAMMING APPROACH ON COMPUTATION OF THE FUZZY ARITHMETIC MEAN. Mathematical and Computational Applications, Vol. 10, No. 2, pp. 211-220. http://dx.doi.org/10.3390/mca10020211

Glynn J., College C.; (2005) A Goal Programming Approach To Human Resource Planning With A Concentration On Promotion Policy. Journal of Business & Economics Research . Volumne 3, No. 3.

Lin T., y O'Leary D., (1993) Goal programming applications in financial management. Advances in mathematical programming and financial planning, Volume 3, pages 211-229.

Tamiz M., Jones D., y El-Darzi E., (1995) A review of Goal Programming and its applications. Annals of Operations Research. Volume 58, Number 1. http://dx.doi.org/10.1007/BF02032309

Dylan, Tamiz, Mehrdad, Ries, Jana (Eds.); (2010) New Developments in Multiple Objective and Goal Programming. Series: Lecture Notes in Economics and Mathematical Systems, Vol. 638.

Marcenaro O., Navarro L., (2007) El éxito en la universidad: Una aproximación cuantílica. Revista de Economía Aplicada Número 44 (vol. XV), págs. 5 a 39.

Block S., Masters W., y Bhagowalia P.; (2010) Child Undernutrition, Household Poverty and National Income in Developing Countries: Quantile Regression Results. Selected Paper prepared for presentation at the Agricultural & Applied Economics Association.

Li Y., y Zhu, J.; (2008) L1-norm quantile regressions, Journal of Computational and Graphical Statistics 17: 163–185. http://dx.doi.org/10.1198/106186008X289155

González-Pachón y Romero. (2001) Aggregation of partial ordinal rankings: an interval goal programming approach. Computers & Operations Research, Volume 28, Issue 8. Pág. 827-834. http://dx.doi.org/10.1016/S0305-0548(00)00010-1

Charnes A., Collomb B.; (1972) Optimal economic stabilization policy: Linear goalprogramming models. Socieconomic Planning Sciences, Vol. 6. 431-5. http://dx.doi.org/10.1016/0038-0121(72)90016-X

Ignizio J.P.; (1974) Interval goal programming and applications. Documento de trabajo. Pennsylvania State University, USA.

Du D., y Pardalos P.M.; (1995) Minimax And Applications, Kluwer, Wiley: Dordrecht. http://dx.doi.org/10.1007/978-1-4613-3557-3

Demyanov V.F., y Molozemov N.V.; (1974) Introduction to Minimax. Wiley: New York.

Rao S.S.; (1987) Game Theory approach for multiobjetive structural optimization. Computers & Structures. Volume 25. Issue 1. Pag. 119-127. http://dx.doi.org/10.1016/0045-7949(87)90223-9

Aumann R., y Hart S.; (1994) Handbook of game theory with theory applications. Libro. Elsevier, 814 páginas.

Simon D. A.; (2006) Game Theory Approach to constrained Minimax State Estimation. IEEE Transactions on signal Processing. http://dx.doi.org/10.1109/TSP.2005.861732

Schniederjans M., Kwak N.K., y Helmer M.; (1982) An Application of Goal Programming to Resolve a site Location Problem. Interfaces. Vol 12. No. 3. http://dx.doi.org/10.1287/inte.12.3.65

Badri M.; (1999) Combining the analiytic hierchachy process and goal programming for global facility location-allocation problem. International Journal of Production Economics. Volume 62, Issue 3, pág: 237-248. http://dx.doi.org/10.1016/S0925-5273(98)00249-7

Greene W.H.; (1998) Análisis econométrico. Prentice Hall.

Novales A.; (1996) Econometría. McGraw Hill.

Wiens D.; (1990) Robust minimax designs for multiple linear regression. Linear Algebra and its Applications. Volume 127. Páginas 327-340. http://dx.doi.org/10.1016/0024-3795(90)90347-F

Huber P., y Ronchetti E.; (2009) Robust Statics. John Wiley and Sons. 354 páginas.

Fan J.; (1993) Local Linear regression Smoothers and their minimax efficiencies. The Annals of Statistics. Vol, 21, No 1, 196-216. http://dx.doi.org/10.1214/aos/1176349022

Aznar J., y Guijarro F.; (2004) Métodos de valoración basados en la programación por metas: modelo de valoración restringida. Estudios Agrosociales y Pesqueros. Numero 204. Pp 29-45.

Basset G., y Koenker R.; (1978) Asymptotic theory of least absolute Errors. The American Statistician, 51 (2): pp. 99-105.

Dielman T. A.; (1986) Comparison of forecasts from least absolute value and least squares regression. Journal of Forecasting, 5 (3): pp. 189-195. http://dx.doi.org/10.1002/for.3980050305

Charnes A., Cooper W. W., y Sueyoshi T.; (1986) Least squares/ridge regression and goal programming/constrained regression alternatives. European Journal of Operational Research, 27 (2). Pp. 146-157. http://dx.doi.org/10.1016/0377-2217(86)90056-1

Romero C.; (2001) Extended lexicographic goal programming: a unifying approach. Omega, 29 (1): pp. 63-71. http://dx.doi.org/10.1016/S0305-0483(00)00026-8

Cómo citar
López Ospina, H. A., & López Ospina, R. D. (2010). Modelos de optimización por metas para el cálculo de estimadores en regresión múltiple. Ciencia E Ingeniería Neogranadina, 20(1), 133-157. https://doi.org/10.18359/rcin.285
Publicado
2010-06-01
Sección
Artículos