Astrócitos: ação e interação no Sistema Nervoso

Palavras-chave: atividade neuronal, astroglia, glia, microglia

Resumo

Os astrócitos, juntamente com os oligodendrócitos e a micróglia, fazem parte do tecido de neuroglia que acompanha os neurônios. Devido à importância e aos avanços nesta área, propõe-se esta revisão bibliográfica, a qual foi realizada através da busca por “astrócitos” em revistas relacionadas a neurociências a nível celular e molecular como “Glia, Cells, Neuron”, dos últimos cinco anos (2018-2023), com o objetivo de compilar informações sobre a estrutura e função dessas células gliais. É abordada a evolução da glia, os tipos de astrócitos e a estrutura e função dos astrócitos. Os astrócitos interagem com outras células e com os sistemas circulatório, imune e neuroendócrino; são fundamentais para o metabolismo, sinaptogênese, neurogênese, neuroplasticidade e neuroproteção.

Biografia do Autor

Dora Nancy Padilla Gil, Universidad de Nariño

Doctor en  Ciencias. Docente Titular Universidad de Nariño, Departamento de Biología, Pasto, Nariño, Colombia

Downloads

Não há dados estatísticos.

Biografia do Autor

Dora Nancy Padilla Gil, Universidad de Nariño

Doctor en  Ciencias. Docente Titular Universidad de Nariño, Departamento de Biología, Pasto, Nariño, Colombia

Referências

W Ng and SY Ng. Remodeling of astrocyte secretome in amyotrophic lateral sclerosis: uncovering novel targets to combat astrocyte-mediated toxicity, Transl Neurodegener. [Internet]. 2022;11(54):1-14.Disponible en: doi: https://www.doi.org/10.1186/s40035-022-00332-y

St-Pierre MK et al. Astrocytes display ultrastructural alterations and heterogeneity in the hippocampus of aged APP-PS1 mice and human post-mortem brain samples, J Neuroinflammation. [Internet]. 2023;20(1):1-73. Disponible en: doi: https://www.doi.org/10.1186/s12974-023-02752-7

Garland EF, Hartnell IJ, Boche D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans. Front Neurosci. [Internet]. 2022; 16(824888). Disponible en: doi: https://www.doi.org/10.3389/fnins.2022.824888

Habib N et al. Disease-associated astrocytes in Alzheimer’s disease and aging, Nat Neurosci. [Internet]. 2022;23(6):701-6. Disponible en: doi: https://www.doi.org/10.1038/s41593-020-0624-8

Zeb S et al. Necroptotic kinases are involved in the reduction of depression-induced astrocytes and fluoxetine’s inhibitory effects on necroptotic kinases, Front Pharmacol. [Internet]. 2023;13(1060954). Disponible en: doi: https://www.doi.org/10.3389/fphar.2022.1060954

Gudkov SV et al. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders, Aging Res Rev. [Internet] 2023;83(101775). Disponible en: doi: https://www.doi.org/10.1016/j.arr.2022.101775

Halpern M, Brennand KJ, Gregory J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol Dis. [Internet]. 2019;132(104562). Disponible en: doi: https://www.doi.org/10.1016/j.nbd.2019.104562

Leavitt ML, Pieper F, Sachs AJ, Martínez-Trujillo JC. Correlated variability modifies working memory fidelity in primate prefrontal neuronal ensembles. Proc Natl Acad Sci USA. [Internet]. 2017;114(12). Disponible en: doi: https://www.doi.org/10.1073/pnas.1619949114

Wu N, Sun X, Zhou C, Yan J, Cheng C. Neuroblasts migration under control of reactive astrocyte-derived bdnf: a promising therapy in late neurogenesis after traumatic brain injury. Stem Cell Res Ther. [Internet]. 2023;14(1):1-2. Disponible en: doi: https://www.doi.org/10.1186/s13287-022-03232-0

Li ZD et al. The divergent effects of astrocyte ceruloplasmin on learning and memory function in young and old mice. Cell Death Dis. [Internet]. 2022;13(11):1-16. Disponible en: https://www.nature.com/articles/s41419-022-05459-4

Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev.[Internet]. 2018;98(1):239-389. Disponible en: doi: https://www.doi.org/10.1152/physrev.00042.2016

Falcone C, Martínez-Cerdeño V. Astrocyte evolution and human specificity. Neural Regen Res. [Internet]. 2023;18(1):1-2. Disponible en: doi: https://www.doi.org/10.4103/1673-5374.340405

Holt MG. Astrocyte heterogeneity and interactions with local neural circuits. Essays Biochem. [Internet]. 2023;67(1):93-106. Disponible en: doi: https://www.doi.org/10.1042/EBC20220136

Markey KM, Saunders JC, Smuts J, von Reyn CR, García ADR. Astrocyte development—More questions than answers. Front Cell Dev Biol. [Internet]. 2023;11(1063843). Disponible en: doi: https://www.doi.org/10.3389/fcell.2023.1063843

Chen J, Poskanze KE, Freeman MR, Monk KR. Live-imaging of astrocyte morphogenesis and function in zebrafish neural circuits. Nat Neurosci. [Internet]. 2020;23(10):1297-1306. Disponible en: doi:https://www.doi.org/10.1038/s41593-020-0703-x

Szpakowski P, Ksiazek-Winiarek D, Turniak-Kusy M, Pacan I, Glabinski A. Human Primary Astrocytes Differently Respond to Pro- and Anti-Inflammatory Stimuli. Biomedicines. [Internet]. 2022;10(8):1-15.Disponible en: doi: https://www.doi.org/10.3390/biomedicines10081769

Forrest SL et al. Distribution Patterns of Astrocyte Populations in the Human Cortex. Neurochem Res.[Internet]. 2023;48(4):1222-1232. Disponible en: doi:https://www.doi.org/10.1007/s11064-022-03700-2

Schweingruber C, Hedlund E. The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral Sclerosis. Biology. [Internet].2022;11(8):1-34. Disponible en: doi:https://www.doi.org/10.3390/biology11081191

Oda S, Funato H. D1- and D2-type dopamine receptors are immunolocalized in pial and layer I astrocytes in the rat cerebral cortex. Front Neuroanat. [Internet]. 2023;17(1111008):1-12. Disponible en: doi: https://www.doi.org/10.3389/fnana.2023.1111008

Liu L, Liu J, Bao J, Bai Q, Wang G. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Front. Immunol. [Internet]. 2020;11(1024):1-11. Disponible en: https://pubmed.ncbi.nlm.nih.gov/32733433/

Gotoh M, Miyamoto Y, Ikeshima-Kataoka H. Astrocytic Neuroimmunological Roles Interacting with Microglial Cells in Neurodegenerative Diseases. IJMS. [Internet]. 2023;24(1599):1-17. Disponible en :doi: https://www.doi.org/10.3390/ijms24021599

Hartmann K et al. Complement 3+-astrocytes arev highly abundant in prion diseases, but their abolishment led to an accelerated disease course and early dysregulation of microglia. Acta neuropathol commun.[Internet]. 2019;7(83):1-15. Disponible en: doi: https://www.doi.org/10.1186/s40478-019-0735-1

Litvinchuk A et al. Complement C3aR Inactivation Attenuates Tau Pathology and Reverses an Immune Network Deregulated in Tauopathy Models and Alzheimer’s Disease. Neuron. [Internet]. 2018;100(6):1337-1353. Disponible en: doi: https://www.doi.org/10.1016/j.neuron.2018.10.031

Stym-Popper G et al. Regulatory T cells decrease C3-positive reactive astrocytes in Alzheimer-like pathology. J Neuroinflammation. [Internet]. 2023;20(64):1-17. Disponible en: doi: https://www.doi.org/10.1186/s12974-023-02702-3

Dai N, Jonnes BD, Husain MI. Astrocytes in the neuropathology of bipolar disorder: review of current evidence. Brain Sci. [Internet]. 2022;12(11):1513. Disponible en: doi: https://doi.org/10.3390/brainsci12111513

Lanciotti A et al. Megalencephalic Leukoencephalopathy with Subcortical Cysts Disease-Linked mlc1 Protein Favors Gap-Junction Intercellular Communication by Regulating Connexin 43 Trafficking in Astrocytes. Cells. [Internet]. 2020;9(6):1425. Disponible en: doi: https://doi.org/10.3390/cells9061425

Droguerre M et al. A New Tool for in Vivo Studyvof Astrocyte Connexin 43 in Brain. Sci Rep. [Internet]. 2019;9(1):18292. Disponible en: doi: https://doi.org/10.1038/s41598-019-54858-9

Dewa KI, Arimura N. Neuronal and astrocytic protein connections and associated adhesión molecules. Neurosci Res. [Internet]. 2023;(187):14-20. Disponible en: doi: https://doi.org/10.1016/j.neures.2022.09.014

Kofuji P, Araque A. Astrocytes and Behavior. Annu Rev Neurosci. [Internet]. 2021;44(1):49-67, 2021. Disponible en: doi: https://doi.org/10.1146/annurev-neuro-101920-112225

Rurak GM et al. Sex differences in developmental patterns of neocortical astroglia: A mouse translatome database. Cell Reports. [Internet]. 2022;38(5):110310. Disponible en: doi: https://doi.org/10.1016/j.celrep.2022.110310

Xin W et al.Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuro psycho pharmacol.[Internet]. 2019;44(2):344-55. Disponible en: doi: https://doi.org/10.1038/s41386-018-0151-4

Pittolo S et al. Dopamine activates astrocytes in prefrontal cortex via α1-adrenergic receptors. Cell Reports. [Internet]. 2022;40(13):111426. Disponible en: doi: https://doi.org/10.1016/j.celrep.2022.111426

Bonifacino T et al. Changes at glutamate tripartite synapses in the prefrontal cortex of a new animal model of resilience/vulnerability to acute stress. Transl Psychiatry. [Internet]. 2023;13(1):62. Disponible en: doi: https://doi.org/10.1038/s41398-023-02366-w

Nozawa O et al. Necl2/3-mediated mechanism for tripartite synapse formation. Development. [Internet].2023;150(4):dev200931. Disponible en: doi: https://doi.org/10.1242/dev.200931

Yao J et al. A Review of Research on the Association between Neuron–Astrocyte Signaling Processes and Depressive Symptoms. IJMS [Internet]. 2023;24(8,6985). Disponible en: doi: https://doi.org/10.3390/ijms24086985

Tan CX, Eroglu C. Cell adhesion molecules regulating astrocyte–neuron interactions. Curr Opin Neurobiol. [Internet]. 2021;(69):170-177. doi: https://doi.org/10.1016/j.conb.2021.03.015

Blanco-Suárez E, Caldwell ALM, Allen N J. Role of astrocyte-synapse interactions in cns disorders:Astrocyte-synapse disease. J Physiol. [Internet]. 2017;595(6):1903-1916. Disponible en: doi: https://doi.org/10.1113/JP270988

Nguyen AQ et al. Astrocytic Ephrin-B1 Controls Synapse Formation in the Hippocampus During Learning and Memory. Front Synaptic Neurosci. [Internet]. 2020;12(10). Disponible en: doi: 10.3389/fnsyn.2020.00010

Viedma-Poyatos Á, González-Jiménez P, Pajares MA, Pérez-Sala D. Alexander Disease gfap r239c mutant shows increased susceptibility to lipoxidation and elicits mitochondrial dysfunction and oxidative stress. Redox Biol. [Internet]. 2022;55(102415). Disponible en: doi: https://doi.org/10.1016/j.redox.2022.102415

Gruber T et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metabolism. [Internet]. 2021;33(6):1155-1170. Disponible en: doi: https://doi.org/10.1016/j.cmet.2021.04.007

Vincent T et al. Functional Consequences of Neuromyelitis Optica-IgG Astrocyte Interactions on Blood-Brain Barrier Permeability and Granulocyte Recruitment. J Immun. [Internet]. 2008;181(8):5730-5737. Disponible en: doi: https://doi.org/10.4049/jimmunol.181.8.5730

Toti A et al. Ultramicronized N-palmitoylethanolamine regulates mast cell-astrocyte crosstalk: a new potential mechanism underlying the inhibition of morphine tolerance. Biomolecules. [Internet]. 2023;13(2):233. Disponible en: doi: https://doi.org/10.3390/biom13020233

Ohno Y, Kunisawa N, Shimizu S. Emerging Roles of Astrocyte Kir4.1 Channels in the Pathogenesis and Treatment of Brain Disease. IJMS. [Internet]. 2021;22(19):10236. Disponible en: doi: https://doi.org/10.3390/ijms221910236

Li B, Zhang D, Verkhratsky A. Astrocytes in Post-traumatic Stress Disorder. Neurosci Bull. [Internet]. 2022;38(8):953-65. Disponible en: doi: https://doi.org/10.1007/s12264-022-00845-6

Woo DH et al. Activation of Astrocytic μ-opioid Receptor Elicits Fast Glutamate Release Through TREK-1-Containing k2p Channel in Hippocampal Astrocytes. Front Cell Neurosci. [Internet]. 2018;(12):319. Disponible en: doi: https://doi.org/10.3389/fncel.2018.00319

Matoba K, Dohi E, Choi EY, Kano S. Glutathione S-transferases Control astrocyte activation and neuronal health during neuroinflammation Front Mol Biosci. [Internet]. 2023;9(1080140). Disponible en:doi: https://doi.org/10.3389/fmolb.2022.1080140

Andersen JV, Schousboe A, Wellendorph P. Astrocytes regulate inhibitory neurotransmission through gaba uptake, metabolism, and recycling. Essays Biochem. [Internet]. 2023;67(1):77-91. Disponible en: doi: https://doi.org/10.1042/EBC20220208

Liu J, Feng X, Wang Y, Xia X, Zheng JC. Astrocytes: GABAceptive and GABAergic Cells in the Brain. Front Cell Neurosci. [Internet]. 2022;16(892497). Disponible en: doi: https://doi.org/10.3389/fncel.2022.892497

Cheng YT, Woo J, Luna-Figueroa E, Maleki AS, Harmanci AS, Deneen B. Social deprivation induces astrocytic TRPA1- gaba suppression of hippocampal circuits. Neuron. [Internet]. 2023;111(8):1301-1315. Disponible en: doi: https://doi.org/10.1016/j.neuron.2023.01.015

Von Bohlen V und Halbach. bdnf effects on dendritic spine morphology and hippocampal function. Cell Tissue Res. [Internet]. 2018;373(3):729-741. Disponible en: doi: https://doi.org/10.1007/s00441-017-2782-x

De Pittà M, Brunel N. Multiple forms of working memory emerge from synapse–astrocyte interactions in a neuron–glia network model. Proc Natl Acad Sci USA. [Internet]. 2022;119(43):1-9. Disponible en: doi:https://doi.org/10.1073/pnas.2207912119

Padilla-Gil DN. El sueño: fisiología y homeostasis. Rev Colombiana Cienc Anim Recia. [Internet]. 15(1):1-13. doi: https://doi.org/10.24188/recia.v15.n1.2023.985

Ikoma Y, Takahashi Y, Sasaki D, Matsui K. Properties of rem sleep alterations with epilepsy. Brain. [Internet]. 2023;awac499. Disponible en: doi: https://doi.org/10.1093/brain/awac499

Henriques VJ, Chiavegato A, Carmignoto G, Gómez-Gonzalo M. Astrocytes Modulate Somatostatin Interneuron Signaling in the Visual Cortex. Cells. [Internet]. 2022;11(9, 1400):1-24. Disponible en: doi: https://doi.org/10.3390/cells11091400

Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐ Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia. [Internet]. 2023;71(1):44-59. Disponible en: doi: https://doi.org/10.1002/glia.24246

Lawal O, Ulloa Severino FP and Eroglu C. “The role of astrocyte structural plasticity in regulating neural circuit function and behavior”, Glia. [Internet]. 2022;70(8):1467-1483. Disponible en: doi: https://doi.org/10.1002/glia.24191

Domingos C et al. Induced remodeling of astrocytes in vivo by manipulation of astrocytic RhoA activity. Cells. [Internet]. 2023;12(2):331. Disponible en: doi https://doi.org/10.3390/cells12020331

Anderson G. Amyotrophic Lateral Sclerosis Pathoetiology and Pathophysiology: Roles of Astrocytes, Gut Microbiome, and Muscle Interactions via the Mitochondrial Melatonergic Pathway, with Disruption Disruption by Glyphosate-Based Herbicides. IJMS. [Internet]. 2022;24(1):587. Disponible en: doi: https://doi.org/10.3390/ijms24010587

Kárpáti A et al. Histamine H1 receptor on astrocytes and neurons controls distinct aspects of mouse behavior. Sci Rep. [Internet]. 2019;9(1):16451. Disponible en: doi: https://doi.org/10.1038/s41598-019-52623-6

Flores Clemente C, Nicolás Vázquez MI, Mera Jiméne E, Hernández Rodríguez M. Inhibition of astrocytic Histamine N-Methyltransferase as a possible target for the treatment of Alzheimer´s disease. Biomolecules.[Internet]. 2021;26(11,10):1408. Disponible en: doi: https://doi.org/10.3390/biom11101408

Heard KJ et al. Chronic cortisol differentially impacts stem cell-derived astrocytes from major depressive disorder patients. Transl Psychiatry. [Internet]. 2021;11(1):608. Disponible en: doi: https://doi.org/10.1038/s41398-021-01733-9

Sa M et al. Hypothalamic gabra5-positive Neurons Control Obesity via Astrocytic gaba. Neuroscience. [Internet]. 2021. doi: https://doi.org/10.1101/2021.11.07.467613

Lee JM et al. Generation of Astrocyte-Specific MAOB Conditional Knockout Mouse with Minimal Tonic gaba Inhibition. Exp Neurobiol. [Internet]. 2022;31(3):158-172. Disponible en: doi: https://doi.org/10.5607/en22016

Sa M, Park G, Lee CJ. Role of Hypothalamic Reactive Astrocytes in Diet-Induced Obesity. Mol Cells. [Internet]. 2022;45(2):65-75. Disponible en: doi: https://doi.org/10.14348/molcells.2022.2044

Kim S, Pajarillo E, Nyarko-Danquah I, Aschner M, Lee E. Role of Astrocytes in Parkinson’s Disease Associated with Genetic Mutations and Neurotoxicants. Cells. [Internet]. 2023;12(4,622):1-19. Disponible en: doi: https://doi.org/10.3390/cells12040622

De Majo M et al. Granulin loss of function in human mature brain organoids implicates astrocytes in tdp-43 pathology. Stem Cell Rep. [Internet]. 2023;18(3):706-719. Disponible en: https://doi.org/10.1016/j.stemcr.2023.01.012

Brash-Arias D et al. The role of astrocytes with genetic mutations linked to amyotrophic lateral sclerosis. Neurology Perspectives. [Internet]. 2023;3(2):100117. Disponible en: doi: https://doi.org/10.1016/j.neurop.2023.100117

Voss CM et al. amp‐activated protein kinase (ampk) regulates astrocyte oxidative metabolism by balancing TCA cycle dynamics. Glia. [Internet]. 2020;68(9):1824-1839. Disponible en: doi: https://doi.org/10.1002/glia.23808

Hashimoto S et al. Neuronal glutathione loss leads to neurodegeneration involving gasdermin activation. Sci Rep. [Internet]. 2023;13(1):1109. Disponible en: doi: https://doi.org/10.1038/s41598-023-27653-w

Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. IJMS. [Internet]. 2022;23(5):2814. Disponible en: doi: https://doi.org/10.3390/ijms23052814

Lee S et al. The overexpression of TDP-43 in astrocytes causes neurodegeneration via a PTP1B-mediated inflammatory response. J Neuroinflammation. [Internet]. 2020;17(1):299. Disponible en: doi: https://doi.org/10.1186/s12974-020-01963-6

Peng AYT et al. Loss of tdp-43 in astrocytes leads to motor deficits by triggering A1-like reactive phenotype and triglial dysfunction. Proc Natl Acad Sci USA. [Internet]. 2020;117(46):29101-29112. Disponible en: doi: https://doi.org/10.1073/pnas.2007806117

Kim JH, Rahman MH, Park D, Jo M, Kim HJ, Suk K. Identification of Genetic Modifiers of tdp-43: Inflammatory Activation of Astrocytes for Neuroinflammation. Cells. [Internet]. 2021;10(3):676. Disponible en: doi: https://doi.org/10.3390/cells10030676

Yang C et al. Low-level overexpression of wild type TDP-43 causes late-onset, progressive neurodegeneration and paralysis in mice. Pandey U, editor. PLoS ONE. [Internet]. 2022;17(2):e0255710. Disponible en: doi: https://doi.org/10.1371/journal.pone.0255710

Bitar L et al. Inhibition of the enzyme autotaxin reduces cortical excitability and ameliorates the outcome in stroke. Sci Transl Med. [Internet]. 2022;14(641):eabk0135. Disponible en: doi: https://doi.org/https://www.science.org/doi/10.1126/scitranslmed.abk0135

Becker S, Nold A, Tchumatchenko T. Modulation of working memory duration by synaptic and astrocytic mechanisms. PLoS Comput Biol. [Internet]. 2022;18(10):e1010543. Disponible en: doi: https://doi.org/10.1371/journal.pcbi.1010543

Endle H et al. AgRP neurons control feeding behavior at cortical synapses via peripherally derived lysophospholipids. Nat Metab. [Internet]. 2022;4(6):683-692.Disponible en: doi: https://doi.org/10.1038/s42255-022-00589-7

Descalzi G, Gao V, Steinman MQ, Suzuki A, Alberini CM. Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons”, Commun Biol. [Internet]. 2019;2(1):247. Disponible en: doi: https://doi.org/10.1038/s42003-019-0495-2

Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci USA. [Internet]. 2021;118(33):e2102191118. Disponible en: doi: https://doi.org/10.1073/pnas.2102191118

Phillips GR, Hancock SE, Jenner AM, McLean C, Newell KA, Mitchell TW. Phospholipid Profiles Are Selectively Altered in the Putamen and White Frontal Cortex of Huntington’s Disease. Nutrients. [Internet].2022;14(10):2086. Disponible en: doi: https://doi.org/10.3390/nu14102086

Huang AYS et al. Region-Specific Transcriptional Control of Astrocyte Function Oversees Local Circuit Activities. Neuron. [Internet]. 2020;106(6):992-1008. Disponible en: doi: https://doi.org/10.1016/j.neuron.2020.03.025

Di Castro MA, Volterra A. Astrocyte control of the entorhinal cortex‐dentate gyrus circuit: Relevance to cognitive processing and impairment in pathology. Glia. [Internet]. 2022;70(8):1536-1553. Disponible en: doi: https://doi.org/10.1002/glia.24128

Hong SI et al. Astrocytes in the external globus pallidus coordinate flexibility of action strategy. [Internet]. 2021. Disponible en: https://www.researchsquare.com/article/rs-845991/v1 [Accedido: 4-julio-2023].

Yang JL et al. Transient neurogenesis in ischemic cortex from Sox2 + astrocytes. Neural Regen Res. [Internet]. 2023;18(7):1521. Disponible en: doi: https://doi.org/10.4103/1673-5374.357910

Albini M, Krawczun-Rygmaczewska A, Cesca F. Astrocytes and brain-derived neurotrophic factor (bdnf). Neurosci Res. [Internet]. 2023. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0168010223000354 [Citado el 4 de julio de 2023]

Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci. [Internet]. 2019;13(363). Disponible en: doi: https://doi.org/10.3389/fncel.2019.00363

Koeppen J et al. Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus”, J Neurosci. [Internet]. 2018;38(25):5710-5726. Disponible en: doi: https://doi.org/10.1523/JNEUROSCI.3618-17.2018

Nguyen AQ et al. Astrocytic Ephrin-B1 Controls Excitatory-Inhibitory Balance in Developing Hippo campus. J Neurosci. [Internet]. 2020;40(36):6854-6871. Disponible en: doi: https://doi.org/10.1523/JNEUROSCI.0413-20.2020

Reitman ME et al. Norepinephrine links astrocytic activity to regulation of cortical state.Nat Neurosci. [Internet]. 2023;26(4):579-593. Disponible en: doi: https://doi.org/10.1038/s41593-023-01284-w

Delepine C et al. Differential Effects of Astrocyte Manipulations on Learned Motor Behavior and Neuronal Ensembles in the Motor Cortex. J Neurosci. [Internet]. 2023;43(15):2696-2713. Disponible en: doi: https://doi.org/ 10.1523/JNEUROSCI.1982-22.2023

Manaserh IH et al. Insulin sensing by astrocytes is critical for normal thermogenesis and body temperature regulation. J Endocrinol. [Internet]. 2020;247(1):39- 52. Disponible en: doi: https://doi.org/10.1530/JOE-20-0052

García-Cáceres C et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat Neurosci. [Internet]. 2019;22(1):7-14. Disponible en: doi: https://doi.org/10.1038/s41593-018-0286-y

Estévez Salguero AH. Papel de los astrocitos en la regulación de la homeostasis energética a través de ampk. Tesis de Doctorado, Universidad de Santiago de Compostela, España. [Internet]. 2022. http://hdl.handle.net/10347/27553

Perea Vega ML. Bases neurobiológicas de los efectos de grelina sobre la plasticidad sináptica hipocampal. Tesis de Doctorado, Universidad Nacional de Córdoba, Argentina. [Internet]. 2022. http://rdu.unc.ar/handle/11086/28272

Varela L et al. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice. J Clin Invest. [Internet]. 2021;131(10):e14423. Disponible en: doi: https://doi.org/10.1172/JCI144239

Perea G et al. Dysfunctional serotonergic neuron-astrocyte signaling in depressive-like states. [Internet]. 2023. Disponible en: https://www.researchsquare.com/article/rs-2361503/v1 [citado el 4 de julio de 2023]

Pellegrino G et al. GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nat Neurosci. [Internet]. 2021;24(12):1660-1672. Disponible en: doi: https://doi.org/10.1038/s41593-021-00960-z

Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinology. [Internet]. 2022. Disponible en: https://onlinelibraryonlinelibrary.wiley.com/doi/10.1111/jne.13104 [Citado el 4 de julio de 2023].

Clayton RW, Lovell-Badge R and Galichet C. The Properties and Functions of Glial Cell Types of the Hypothalamic Median Eminence. Front Endocrinol. [Internet]. 2022;13(953995). Disponible en: doi:https://doi.org/10.3389/fendo.2022.953995/full

Baudon A et al. Emerging role of astrocytes in oxytocin-mediated control of neural circuits and brain functions. Prog Neurobiol. [Internet]. 2022;7(102328). Disponible en: doi: https://doi.org/10.1016/j.pneurobio.2022.102328

Benedet AL et al. Differences Between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels Across the Alzheimer Disease Continuum. JAMA Neurol. [Internet]. 78, n.° 12,1471, 2021. doi: https://doi.org/10.1001/jamaneurol.2021.3671

Zyśk M et al. Amyloid-β accumulation in human astrocytes induces mitochondrial disruption and changed energy metabolism. J Neuroinflammation. [Internet]. 2023;20(1,43). Disponible en: doi: https://doi.org/10.1186/s12974-023-02722-z

Philippot C et al. Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites. Cell Reports. 2021;34(3):108642. Disponible en: doi: https://doi.org/10.1016/j.celrep.2020.108642

Su Y et al. Astrocyte endfoot formation controls the termination of oligodendrocyte precursor cell perivascular migration during development. Neuron. [Internet]. 2023;111(2):190-201. Disponible en: doi: https://doi.org/10.1016/j.neuron.2022.10.032

Hu X, Yu G, Liao X, Xiao L. Interactions Between Astrocytes and Oligodendroglia in Myelin Developmen and Related Brain Diseases. Neurosci Bull. [Internet]. 2023;39(3):541-552. Disponible en: doi: https://doi.org/10.1007/s12264-022-00981-z

Hasan M et al. Chemogenetic activation of astrocytes promotes remyelination and restores cognitive deficits in visceral hypersensitive rats. iScience. [Internet]. 2023;26(1):105840. Disponible en: doi: https://doi.org/10.1016/j.isci.2022.105840

Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci. [Internet]. 2022;16(991779). Disponible en: doi: https://doi.org/ 10.3389/fnins.2022.991779

Lohr C. Role of P2Y receptors in astrocyte physiology and pathophysiology. Neuropharmacology. [Internet]. 2023;223(109311). Disponible en: doi: https://doi.org/10.1016/j.neuropharm.2022.109311

Launay A et al. The role of adenosine A2A receptors in Alzheimer’s disease and tauopathies. Neuropharmacology. [Internet]. 2023;226(109379). Disponible en: doi: https://doi.org/10.1016/j.neuropharm.2022.109379

García CP, Licht-Murava A, Orr AG. Effects of adenosine A2A receptors on cognitive function in health and disease. [Internet]. 2023. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0074774223000211 [Citado el 4 de julio de 2023].

Torres-Ramos MA, Morales-López BI. Neuroinflamación mediada por los astrocitos en el envejecimiento y la neurodegeneración a través del factor nuclear κβ y el receptor de hidrocarburos de arilo. Neurobiología. 2022;13(22):1-12.

Simpson Ragdale H et al. Injury primes mutation- bearing astrocytes for dedifferentiation in later life. Curr Biol. [Internet]. 2023;33(6):1082- 1098. Disponible en: doi: https://doi.org/10.1016/j.cub.2023.02.013

Como Citar
Padilla Gil, D. N. (2024). Astrócitos: ação e interação no Sistema Nervoso. Revista Med, 32(1), 83–100. https://doi.org/10.18359/rmed.6870
Publicado
2024-06-29
Seção
Artículos

Métricas

Crossref Cited-by logo
QR Code