Study of the Detection Capability of a GPR System using Wavelets in a Dry Clayey Terrain

  • Javier Andrés Ledezma Ríos Universidad del Cauca
Keywords: Wavelet Signals, Correlation, GPR

Abstract

Electromagnetic waves can provide information about certain situations, but the loss of energy, due to contact or penetration into surfaces, can alter information data when waves are influenced by the relative permittivity of the medium and the dielectric constant of some materials. Therefore, for detection purposes, it becomes necessary to investigate other types of signals that do
not result in information loss when used for detection in terrains with particular characteristics. In this research work, the detection capability of a gpr system using wavelet-type signals is analyzed. Wavelets are well-known as a signal analysis tool. The result is that wavelet-type signals can identify underground objects when transmitted and received under amplitude, correlation, and signal penetration depth analysis.

Author Biography

Javier Andrés Ledezma Ríos, Universidad del Cauca

Magíster en ingeniería electrónica y telecomunicaciones e ingeniero físico. Universidad del Cauca, Popayán,Colombia.

Downloads

Download data is not yet available.

Author Biography

Javier Andrés Ledezma Ríos, Universidad del Cauca

Magíster en ingeniería electrónica y telecomunicaciones e ingeniero físico. Universidad del Cauca, Popayán,Colombia.

References

T. Dawood, Z. Zhu, y T. Zayed, “Deterioration mapping in subway infrastructure using sensory data of GPR”, Tunn. Undergr. Space Technol.,vol. 103, sep., 2020, DOI: https://doi.org/10.1016/J.TUST.2020.103487.

X. Feng, Q. Ren, y C. Liu, “Quantitative imaging for civil engineering by joint full waveform inversion of surface-based GPR and shallow seismic reflection data”, Constr. Build. Mater., vol. 154, pp. 1173–1182,nov., 2017, DOI: https://doi.org/10.1016/J.CONBUILDMAT.2017.07.033

G. Alsharahi, A. Faize, M. Louzazni, A. Mostapha, M.Bayjja, y A. Driouach, “Detection of cavities and fragile areas by numerical methods and GPR application”, J. Appl. Geophys., vol. 164, pp. 225–236, may., 2019,DOI: https://doi.org/10.1016/J.JAPPGEO.2019.03.007

W. Zhao, E. Forte, F. Fontana, M. Pipan y G. Tian, “GPR imaging and characterization of ancient Roman ruins in the Aquileia Archaeological Park, NE Italy”, Measurement, vol. 113, pp. 161–171, ene.,2018, DOI: https://doi.org/10.1016/J.MEASUREMENT.2017.09.004.

S. Sonkamble, y S. Chandra, “GPR for earth and environmental applications: Case studies from India”, J.Appl. Geophys., vol. 193, oct., 2021, DOI: https://doi.org/10.1016/J.JAPPGEO.2021.104422

N. Diamanti, A. P. Annan, y I. Giannakis, “Predicting GPR performance for buried victim search & rescue”,16th Int. Conf. Ground Penetrating Radar (GPR),IEEE, jun., 13, pp. 1–6, DOI: https://doi.org/10.1109/ICGPR.2016.7572642

K. H. Ko, G. Jang, K. Park, K. Kim, “GPR-based landmine detection and identification using multiple features”,Int. J. Antennas Propag., 2012, DOI: https://doi.org/10.1155/2012/826404

E. Mendoza Patiño, L. Serrano, “Programación de una plataforma sdr (software defined radio) para la detección de minas antipersonas”, tesis de pregrado, Pont. Univ. Jav., Bogotá, 2014.

J. Ruiz Salazar y D. A. Orejuela Caicedo, Implementación de la transformada wavelet sobre un sistema embebido para el pre-procesamiento de señales unidimensionales no estacionarias. Cali: Universidad De San Buenaventura Cali, 2016.

C. A. Jara, M. Valdebenito, A. Iroume, “Exploración geofísica mediante la técnica del radar de penetración terrestre un estado del conocimiento”, p. 138, http://cybertesis.uach.cl/tesis/uach/2015/bmfcij.37e/doc/bmfcij.37e.pdf

H. M. Jol, Ground Penetrating Radar Theory and Applications, Elsevier, 2009.

D. Ayala Cabrera, “Caracterización de tuberías enterradas para redes de abastecimiento en servicio mediante el análisis de imágenes obtenidas con radar de subsuelo (Ground Penetrating Radar - GPR)”, tesina de master, Univ. Pol. de Val., 2012, http://hdl.handle.net/10251/14432

A. Van der Wielen, Characterization of thin layers into concrete with Ground Penetrating Radar, Université de Liège, 2014.

M. Javadi y H. Ghasemzadeh, “Wavelet analysis for ground penetrating radar applications: A case study”,J. Geophys. Eng., vol. 14, no. 5, pp. 1189–1202, oct.,2017, DOI: 10.1088/1742-2140/aa7303

G. Kaiser, “Physical wavelets and radar: a variational approach to remote sensing”, IEEE Antennas Propag.Mag., vol. 38, no. 1, pp. 15–24, feb., 1996, DOI:10.1109/74.491287

S.-Y. Cao y Y.-F. Zheng, “Recent Developments in Radar Waveforms”, J. Radars, vol. 3, no. 5, pp. 603-621,oct., 2014., DOI: 10.3724/SP.J.1300.2014.14044

S. Cao, “Radar Sensing Based on Wavelets”, tesis de doctorado, The Ohio State University, 2014. [18] D. Huygens, “Detecting, locating, and characterizing voids in disaster rubble for search and rescue”,Adv. Eng. Inform., vol. 42, p. 100974, DOI: 10.1016/J.AEI.2019.100974

V. Saavedra-Gastélum, T. Fernández-Harmony, T.Harmony-Baillet y V. M. Castaño-Meneses, “Ondeletas en ingeniería: Principios y aplicaciones”, Ingeniería, investigación y tecnología, vol. 7, no. 3.pp. 185-190, 2006. Disponible en: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-77432006000300005

E. Gómez-Luna, D. Silva y G. Aponte, “Selección de una wavelet madre para el análisis frecuencial de señales eléctricas transitorias usando WPD”, Ingeniare, vol. 21, no. 2, pp. 262–270, 2013, DOI: 10.4067/S0718-33052013000200009

Waveguide. “Building the Cylinder (Can)”. Waveguide.https://www.wikarekare.org/Antenna/WaveguideCan.html

Spectrum instrumentation.“Detalles de velocidad de muestreo”https://spectrum-instrumentation.com/support/knowledgebase/hardware_features/Sampling_Speed_Details.php

How to Cite
Ledezma Ríos, J. A. (2023). Study of the Detection Capability of a GPR System using Wavelets in a Dry Clayey Terrain. Revista Facultad De Ciencias Básicas, 18(1), 107–137. https://doi.org/10.18359/rfcb.6790
Published
2023-12-28
Section
Artículos

Altmetric

Crossref Cited-by logo
QR Code