Optimizing Iron, Manganese, and Zinc fertilization in rice (Oryza sativa L.) through Bacillus, Pseudomonas, and Azospirillum bacteria

Palabras clave: Micronutrients, Iron, Manganese, Zinc, Bacteria, Biofertilizer, Biostimulant


Rice (Oryza sativa) is a cereal crop crucial for global food security. However, the limited availability of micronutrients such asIron (Fe), Manganese (Mn), and Zinc (Zn) in calcareous soils can lead to metabolic disturbances in the plant, resulting in various anomalies. These disturbances can reduce yields and, in severe cases, lead to plant death. Plant growth-promoting microorganisms found in the soil rhizosphere can solubilize these micronutrients. These microorganisms have also been isolated from soils and utilized as biostimulants and biofertilizers, facilitating their use in optimizing rice cultivation. The objective of this study was to conduct a literature review on Bacillus, Pseudomonas and Azospirillum and their ability to solubilize Fe, Mn, and Zn rice cultivation. The study describes the nature, assimilation, and importance of these three micronutrients in soil and in rice cultivation, as well as the optimization of the microorganisms as ingredients that promote crop growth and productivity. Furthermore, it discusses their mechanisms, such as the secretion of the siderophores deoxymugenic acid (DMA) and mugenic acid (MA), the production of organic acids like indole-3-acetic acid (IAA) and abscisic acid, the production of phytohormones(e.g., cytokinins), and a network of metalloproteins that facilitate soil acidification. These mechanisms enable the solubilization of Fe, Mn, and Zn in the soil associated with the crop, making them available for absorption by the root system in the form of chelates. To sum up, the addition of Bacillus, Pseudomonas and Azospirillum facilitates the absorption of micronutrients in the crop and mitigates the negative effects caused by the constant application of chemical fertilizers, which can accumulate in plan tissue, soil, and water.

Biografía del autor/a

Yenny Astrid Barahona Pico , Universidad Internacional del Trópico Americano Unitrópico

Master’s Degree in Agroenviromental and Agri -food Sciences. Master’s Degree in Comprehensive Quality Management. Specialist in Instrumental Chemical Analysis. Bachelor’s degree in Chemistry. Provisional Professor of Basic Chemistry Sciences, Universidad Internacional del Trópico Americano, Unitrópico. Yopal, Casanare, Colombia.

Rocío Alexandra Ortiz Paz , Corporación colombiana de Investigación Agropecuaria Agrosavia

Master’s Degree in Phytopathology. Agroforestry Engineering. Master Researcher, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, CI La Selva. Rionegro,Antioquia, Colombia.

Sandra López Rayo , Universidad Autonoma de Madrid

Ph. D. in Chemistry, Master’s Degree in Agricultural Chemistry. Bachelor’s Degree in Chemistry. Contracted Doctor Professor, Department of Agricultural Chemistry and Bromatology. Universidad Autónoma de Madrid- UAM, España. España.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Yenny Astrid Barahona Pico , Universidad Internacional del Trópico Americano Unitrópico

Master’s Degree in Agroenviromental and Agri -food Sciences. Master’s Degree in Comprehensive Quality Management. Specialist in Instrumental Chemical Analysis. Bachelor’s degree in Chemistry. Provisional Professor of Basic Chemistry Sciences, Universidad Internacional del Trópico Americano, Unitrópico. Yopal, Casanare, Colombia.

Rocío Alexandra Ortiz Paz , Corporación colombiana de Investigación Agropecuaria Agrosavia

Master’s Degree in Phytopathology. Agroforestry Engineering. Master Researcher, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, CI La Selva. Rionegro,Antioquia, Colombia.

Sandra López Rayo , Universidad Autonoma de Madrid

Ph. D. in Chemistry, Master’s Degree in Agricultural Chemistry. Bachelor’s Degree in Chemistry. Contracted Doctor Professor, Department of Agricultural Chemistry and Bromatology. Universidad Autónoma de Madrid- UAM, España. España.

Referencias bibliográficas

Acevedo, O., Ortiz, E., Cruz, M., & Cruz, E. (2004). Role of Iron Oxides in Soils. Terra Latinoamericana, 22(4), 485–497. Retrieved from https://www.redalyc.org/pdf/573/57311096013.pdf

Aguado-Santacruz, G. A., Moreno-Gómez, B., Jiménez-Francisco, B., García-Moya, E., & Preciado-Ortiz, R. E. (2012). Impacto de los sideróforos microbianos y fitosideróforos en la asimilación de hierro por las plantas: Una síntesis. Revista Fitotecnia Mexicana, 35(1), 9–21.

Alloway, B.J.(2008). Zinc in Soils and Crop Nutrition. International Zinc Association, International Fertilizer Industry Association.,1–39. Retrieved from:https://web.archive.org/web/20170809062231id_/http://www.zinc.org/wp-content/uploads/sites/4/2015/04/pdf_2008_IZA_IFA_ZincInSoils.pdf

Alori, E. T., & Babalola, O. O. (2018). Microbial inoculants for improving crop quality and human health in Africa. Frontiers in Microbiology, 9(SEP), 1–12. https://doi.org/10.3389/fmicb.2018.02213

Ariga, T., Hazama, K., Yanagisawa, S., & Yoneyama, T. (2014). Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Science and Plant Nutrition, 60(4), 460–469. https://doi.org/10.1080/00380768.2014.922406

Azziz, G., Monza, J., Etchebehere, C., & Irisarri, P. (2017). nirS- and nirK-type denitrifier communities are differentially affected by soil type, rice cultivar and water management. European Journal of Soil Biology, 78, 20–28. https://doi.org/10.1016/j.ejsobi.2016.11.003

Bashan, Y., & de-Bashan, L. E. (2010). How the plant growth-promoting bacterium azospirillum promotes plant growth-a critical assessment. Advances in Agronomy, 108(C), 77–136. https://doi.org/10.1016/S0065-2113(10)08002-8

Bashir, K., Ishimaru, Y., & Nishizawa, N. K. (2012). Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 361(1–2), 189–201. https://doi.org/10.1007/s11104-012-1240-5

Botero, J., Castaño Zapata, C., & Saldarriaga. (2013). Manual práctico de bacteriología vegetal. Manizales, Colombia.

Chauhan, B. S., Jabran, K., & Mahajan, G. (2017). Rice Production Worldwide. In Rice Production Worldwide. https://doi.org/10.1007/978-3-319-47516-5

Chen, C. C., Dixon, J. B., & Turner, F. T. (1980). Iron Coatings on Rice Roots: Morphology and Models of Development. Soil Science Society of America Journal, 44(5), 1113–1119. https://doi.org/10.2136/sssaj1980.03615995004400050046x

Dal Cortivo, C., Barion, G., Ferrari, M., Visioli, G., Dramis, L., Panozzo, A., & Vamerali, T. (2018). Effects of field inoculation with VA M and bacteria consortia on root growth and nutrients uptake in common wheat. Sustainability (Switzerland), 10(9). https://doi.org/10.3390/su10093286

Dal Cortivo, C., Ferrari, M., Visioli, G., Lauro, M., Fornasier, F., Barion, G., ... Vamerali, T. (2020). Effects of Seed-Applied Biofertilizers on Rhizos-phere Biodiversity and Growth of Common Wheat (Triticum aestivum L.) in the Field. Frontiers in Plant Science, 11(February), 1–14. https://doi.org/10.3389/fpls.2020.000

Di Simine, C. D., Sayer, J. A., & Gadd, G. M. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biology and Fertility of Soils, 28(1), 87–94. https://doi.org/10.1007/s003740050467

El-Sayed, W. S., Akhkha, A., El-Naggar, M. Y., & Elbadry, M. (2014). In vitro antagonistic activity, plant growth promoting traits and phylogenetic affiliation of rhizobacteria associated with wild plants grown in arid soil. Frontiers in Microbiology, 5(DEC), 1–12. https://doi.org/10.3389/fmicb.2014.00651

Fageria, N. K., Wander, A. E., & Silva, S. C. (2014). Rice (Oryza sativa) cultivation in Brazil. Indian Journal of Agronomy, 59(3), 350–358.

Fageria, N. K., Dos Santos, A. B., & Cobucci, T. (2011). Zinc nutrition of lowland rice.

Communications in Soil Science and Plant Analysis, 42(14), 1719–1727. https://doi.org/10.1080/00103624.2011.584591

Faostat. (2020). No Title. Retrieved from http://www.fao.org/faostat/es/

Ghoneim, A. (2016). Effect of Different Methods of Zn Application on Rice Growth, Yield and Nutrients Dynamics in Plant and Soil. Journal of Agriculture and Ecology Research International, 6(2), 1–9. https://doi.org/10.9734/jaeri/2016/22607

Gontia-Mishra, I., S. Sapre, A. Sharma, and S. Tiwari. 2016. “Amelioration of Drought Tolerance in Wheat by the Interaction of Plant Growth-Promoting Rhizobacteria.”Plant Biology 18(6): 992–1000

Gontia-Mishra, I., Sapre, S., & Tiwari, S. (2017). Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere, 3, 185–190. https://doi.org/10.1016/j.rhisph.2017.04.013

Gorain, B., Paul, S., & Parihar, M. (2022). Role of soil microbes in micronutrient solubilization. In New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier.,131–150. https://doi.org/https://doi.org/10.1016/B978-0-32-385163-3.00018-1

Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V., & Annapurna, K. (2010). Bacillus and Paenibacillus spp.: Potential PGPR for Sustainable Agriculture. 18, 333–364. https://doi.org/10.1007/978-3-642-13612-2

Griffiths, M. W. (2013). Bacillus cereus and Other Bacillus spp. In Journal of Petrology (Vol. 369). https://doi.org/10.1017/CBO9781107415324.004

Grundmeier, A., & Dau, H. (2012). Structural models of the manganese complex of photosystem II and mechanistic implications. Biochimica et Biophysica Acta - Bioenergetics, 1817(1), 88–105. https://doi.org/10.1016/j.bbabio.2011.07.004

Gusain, Y. S., & Sharma, A. K. (2019). PGPRs inoculations enhances the grain yield and grain nutrient content in four cultivars of rice ( Oryza sativa L .) under field condition. Journal of Pharmacognosy and Phytochemistry, 8(1), 1865–1870. Retrieved from http://www.phytojournal.com/archives/2019/vol8issue1/PartAE/8-1-333-575.pdf

Haroon, M., & Khan, S. T. (2022). Microbial Biofertilizers and Micronutrient Availability. In Microbial Biofertilizers and Micronutrient Availability. https://doi.org/10.1007/978-3-030-76609-2

He, Z., Zhu, Y., Feng, J., Ji, Q., Chen, X., & Pan, X. (2021). Long-term effects of four environment-related iron minerals on microbial anaerobic oxidation of methane in paddy soil: A previously overlooked role of widespread goethite. Soil Biology and Biochemistry, 161(July), 108387. https://doi.org/10.1016/j.soilbio.2021.108387

Herbig, A. F., & Helmann, J. D. (2001). Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA Molecular Microbiology,41(4),849–859. https://doi.org/10.1046/j.1365-2958.2001.02543.x

Herndon, E. M., & Brantley, S. L. (2011). Movement of manganese contamination through the Critical Zone. Applied Geochemistry, 26(SUPPL.), S40–S43. https://doi.org/10.1016/j.apgeochem.2011.03.024

Hofmann, M., Retamal-Morales, G., & Tischler, D. (2020). Metal binding ability of microbial natural metal chelators and potential applications. Natural Product Reports, 37(9), 1262–1283. https://doi.org/10.1039/c9np00058e

Husson, O. (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 362(1–2), 389–417. https://doi.org/10.1007/s11104-012-1429-7

Ikhajiagbe, B., & Ohanmu, E. O. (2019).Growth and yield assessment of rice ( oryza sativa ) after rhizo-inoculation with selected plant growth-promoting rhizobacteria in a ferric ultisol. Studia Universitatis“Vasile Goldiş”,Seria Ştiinţele Vieţii, 29(3),134–143. Retrieved from: https://www.researchgate.net/publication/344178851_Growth_and_yield_assessment_of_rice_Oryza_sativa_after_rhizo-inoculation_with_selected_plant_growth-promoting_rhizobacteria_in_a_ferric_ultisol

Información técnica agrícola, Infoagro. (s.f). El cultivo del arroz. https://www.infoagro.com/herbaceos/cereales/arroz.htm#:~:text=El%20arroz%20necesita%20para%20germinar

Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M.,Kakei, Y., Suzuki, K., … Nishizawa, N. K. (2009).Rice OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. Journal of Biological Chemistry, 284(6), 3470–3479. https://doi.org/10.1074/jbc.M806042200

Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., … Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant Journal, 45(3), 335–346. https://doi.org/10.1111/j.1365-313X.2005.02624.x

Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H.,Tsukamoto, T., Takahashi, M., … Nishizawa, N.K. (2010). Rice metal-nicotianamine transporter,OsYSL2, is required for the long-distance transportof iron and manganese. Plant Journal, 62(3), 379–390. https://doi.org/10.1111/j.1365-313X.2010.04158.x

Jones, D.L., Darrah, P.R (1994). Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166, 247–257.https://doi.org/10.1007/BF00008338

Keerthana, K. S., & Lavanya, G. R. (2022). Heritability and Character Association among Yield Component Characters and Grain Yield in Rice (Oryza sativa L.). International Journal of Plant & Soil Science, 11(8), 1035–1044. https://doi.org/10.9734/ijpss/2022/v34i2231467

Kumar, A., Verma, H., Singh, V. K., Singh, P. P., Singh,S. K., Ansari, W. A., … Abstract, 7. (2017). Role of Pseudomonas sp. in Sustainable Agriculture and Disease Management. Agriculturally Important Microbes for Sustainable Agriculture, 2, 1–374. https://doi.org/10.1007/978-981-10-5343-6

Kumar, L., Meena, N. L., & Singh, U. (2016). Zinc Transporter: Mechanism for Improving Zn Availability. Biofortification of Food Crops, 129–146. https://doi.org/10.1007/978-81-322-2716-8

Kumar, V., Dinesh, K., Singh, Y. V., & Rishi, R. (2015). Effect of iron fertilization on dry-matter production , yield and economics of aerobic rice ( Oryza sativa ).60(December), 547–553.

Kumar, A., Dewangan, S., Lawate, P., Bahadur, I., & Prajapati, S. (2019). Zinc-Solubilizing Bacteria: A Boon for Sustainable Agriculture. 139–155. https://doi.org/10.1007/978-981-13-6536-2_8

Kar, S., & Panda, S. K. (2020). Iron Homeostasis in Rice: Deficit and Excess. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 90(2), 227–235. https://doi.org/10.1007/s40011-018-1052-3

Kawakami, Y., & Bhullar, N. K. (2018). Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. Journal of Integrative Plant Biology, 60(12), 1181–1198. https://doi.org/10.1111/jipb.12751

Khoshru, Bahman et al. 2023. “Enhancing Manganese Availability for Plants through Microbial Potential:A Sustainable Approach for Improving Soil Health and Food Security.” Bacteria 2(3): 129–4

Lee, J. S., Wissuwa, M., Zamora, O. B., & Ismail, A. M. (2017). Biochemical indicators of root damage in rice (Oryza sativa) genotypes under zinc deficiency stress. Journal of Plant Research, 130(6), 1071–1077.https://doi.org/10.1007/s10265-017-0962-0

Liao, Yumeng et al. 2023. “Response of Cd, Zn Translocation and Distribution to Organic Acids Heterogeneity in Brassica Juncea L.” Plants: 1–16. https://doi.org/10.3390/plants12030479

Li, M., Ashraf, U., Tian, H., Mo, Z., Pan, S., Anjum, S. A., … Tang, X. (2016). Manganese-induced regulations in growth, yield formation, quality characters, rice aroma and enzyme involved in 2-acetyl-1-pyrroline biosynthesis in fragrant rice. Plant Physiology and Biochemistry, 103, 167–175. https://doi.org/10.1016/j.plaphy.2016.03.009

Li, R., Jiang, Y., Xi, B., Li, M., Meng, X., Feng, C., … Jiang, Y. (2018). Raw hematite based Fe(III) bio-reduction process for humified landfill leachate treatment. Journal of Hazardous Materials, 355(Iii), 10–16. https://doi.org/10.1016/j.jhazmat.2018.05.002

Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Science Society of America Journal, 42(3), 421–428. https://doi.org/10.2136/sssaj1978.03615995004200030009x

Lindsay, Willard L. (1979). TEN IRON. In Ed. John Wiley and Sons. (Ed.), Chemical equilibria in soils.New York, NY.

Liu, X. M., Shaw, J., Jiang, J. Z., Bloemendal, J., Hesse, P., Rolph, T., & Mao, X. G. (2010). Analysis on variety and characteristics of maghemite. Science China Earth Sciences, 53(8), 1153–1162. https://doi.org/10.1007/s11430-010-0030-2

Liu, Y. M., Liu, D. Y., Zhao, Q. Y., Zhang, W., Chen, X. X., Xu, S. J., & Zou, C. Q. (2020). Zinc fractions in soils and uptake in winter wheat as affected by repeated applications of zinc fertilizer. Soil and Tillage Research, 200(June 2019), 104612. https://doi.org/10.1016/j.still.2020.104612

Lucena, Juan J. 2003. “Fe Chelates for Remediation of Fe Chlorosis in Strategy I Plants.” Journal of Plant Nutrition 26(10–11): 1969–84.

Maheshwari, D. K.(2012). Bacteria in Agrobiology: Stress Management,9783642234,1–333.https://doi.org/10.1007/978-3-642-23465-1

Maqueria, L., Torres, W., Pérez, S., Díaz, D., & Roján, O. (2016). Influencia de la temperatura ambiental y la fecha de siembra sobre la duración de las fases fenológicas en cuatro cultivares de arroz. 37(1), 65–7

Marschner, H. (1995). Mineral nutrition of higher plants.second edition. 889pp. London: Academic Press, £29.95 (paperback). Annals of Botany, 78(4), 527–528. https://doi.org/10.1006/anbo.1996.0155

Marschner, P. (2011). Marschner´s Mineral Nutrition of Higher Plants. In Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004

Meena, V. S., Maurya, B. R., Meena, S. K., Meena, R. K., Kumar, A., Verma, J. P., & Singh, N. P. (2016). ¿Can Bacillus Species Enhance Nutrient Availability in Agricultural Soils? Bacilli and Agrobiotechnology, 1–416. https://doi.org/10.1007/978-3-319-44409-3

Meena, B. L., Datta, S. P., Rattan, R. K., Singh, S., Kumar, A., Kaledhonkar, M. J., & Meena, R. L. (2019). A New Soil Testing Programme for the Evaluation of Intensity and Quantity Factors of Iron. National Academy Science Letters, 42(3), 191–193. https://doi.org/10.1007/s40009-018-0713-3

Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10(4), 476–494. https://doi.org/10.4067/S0718-95162010000200008

Nadeem, F., & Farooq, M. (2019). Application of Micronutrients in Rice-Wheat Cropping System of South Asia. Rice Science, 26(6), 356–371. https://doi.org/10.1016/j.rsci.2019.02.002

Nozoye, T., Nagasaka, S., Takahashi, M., Sato, Y.,Sato, Y., Uozumi, N., & Nishizawa, N. K. (2011).Phytosiderophore Efflux Transporters Are Crucialfor Iron Acquisition in Graminaceous Plants. https://doi.org/10.1074/jbc.M110.180026

Navarro, G. G., & Navarro, G. S. (2013). Química agrícola: química del suelo y de los nutrientes esenciales para las plantas (3a Edición; E. Mundiprensa, ed.).

Ning, Xinyi et al. 2023. “Research Progress on Iron Absorption, Transport, and Molecular Regulation Strategy in Plants.” Frontiers in Plant Science 14(July): 1–11.

Nozoye, T., Nagasaka, S., Takahashi, M., Sato, Y., Sato, Y., Uozumi, N., & Nishizawa, N. K. (2011). Phytosiderophore Efflux Transporters Are Crucial for Iron Acquisition in Graminaceous Plants. https://doi.org/10.1074/jbc.M110.180026

Northover, George H.R. et al. 2021. “Effect of Salinity on the Zinc(II) Binding Efficiency of Siderophore Functional Groups and Implications for Salinity Tolerance Mechanisms in Barley.” Scientific Reports 11(1): 1–12.

Wairich, A., de Oliveira, B. H. N., Arend, E. B., Duarte, G. L., Ponte, L. R., Sperotto, R. A., … Fett, J. P. (2019). The Combined Strategy for iron uptake is not exclusive to domesticated rice (Oryza sativa). Scientific Reports, 9(1), 1–17. https://doi.org/10.1038/s41598-019-52502-0

Nascente, A. S., de Filippi, M. C. C., Lanna, A. C., de Souza, A. C. A., da Silva Lobo, V. L., & da Silva, G. B. (2017). Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, 24(3), 2956–2965. https://doi.org/10.1007/s11356-016-8013-2

Nautiyal, N., Yadav, S., & Singh, A. D. (2011). Improvement in reproductive development, seed yield, and quality in wheat by zinc application to a soil deficient in zinc. Communications in Soil Science and Plant Analysis, 42(17), 2039–2045. https://doi.org/10.1080/00103624.2011.596235

Neumann, G., & Römheld, V. (2002). Root-induced changes in the availability of nutrients in the rhizosphere. I. Plant Roots:The Hidden Half. Marcel, 41–93.

Noulas, C., Tziouvalekas, M., & Karyotis, T. (2018). Zinc in soils, water and food crops. Journal of Trace Elements in Medicine and Biology, 49(February), 252–260. https://doi.org/10.1016/j.jtemb.2018.02.009

Pradhan, S., Meena, R. P., Ram, H., Rana, K., Parihar, M., & Singh, A. K. (2021). Zn-solubilizing microorganism: A novel perspective for sustainable agriculture. In Biofertilizers: Volume 1: Advances in Bio-inoculants. https://doi.org/10.1016/B978-0-12-821667-5.00025-7

Prakash, P., Sobhana, E., Sujithra, P., & Hemalatha, M. (2019). Zinc: A Macro Micronutrient for Sustainable Rice Production. In ADVANCES IN AGRONOMY (pp. 01–19). Retrieved from https://www.researchgate.net/profile/Bishal_Mukherjee2/publication/335973589_Water_Efficient_Rice_Cultivation_Technological_Interventions/links/5d87c1f2a6fdcc8fd6106441/Water-Efficient-Rice-Cultivation-Technological-Interventions.pdf#page=7

Pereg, L., de-Bashan, L. E., & Bashan, Y. (2016). Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil, 399(1–2), 389–414. https://doi.org/10.1007/s11104-015-2778-9

Petrik, M., Zhai, C., Haas, H., & Decristoforo, C. (2017). Siderophores for molecular imaging applications. Clinical and Translational Imaging, 5(1), 15–27. https://doi.org/10.1007/s40336-016-0211-x

Quintero, C. (2018). templada argentina. Archivo Agronómico, # 17, 1–5. Retrieved from http://lacs.ipni.net/ipniweb/region/lacs.nsf/0/5F6E6EAE266A3B-960325827500670DE1/$FILE/AA 17.pdf

Rengel, M., Cruz, J., Croce, J., Montaño, J., & Chirinos, I. (2012). Efecto de la fertilización foliar con zinc y boro sobre los componentes del rendimiento en el cultivo de arroz (Oryza sativa L.) en suelos inundados. Revista Cientifica UDO Agricola, 12(1), 158–166.

Rice Knowledge Bank. (s.f.). Iron toxicity - IRRI Rice Knowledge Bank. Retrieved July 4, 2020, from http://www.knowledgebank.irri.org/training/factsheets/nutrient-management/deficiencies-and-toxicities-fact-sheet/item/iron-toxicity

Rice Knowledge Bank. (s.f). Manganese (Mn) deficiency - IRRI Rice Knowledge Bank. Retrieved July 4, 2020, from http://www.knowledgebank.irri.org/training/fact-sheets/nutrient-management/deficiencies-and-toxicities-fact-sheet/item/manganese-deficiency

Rose, T. J., Impa, S. M., Rose, M. T., Pariasca-Tanaka, J., Mori, A., Heuer, S., … Wissuwa, M. (2013). Enhancing phosphorus and zinc acquisition efficiency in rice: A critical review of root traits and their potential utility in rice breeding. Annals of Botany, 112(2), 331–345. https://doi.org/10.1093/aob/mcs217

Roskova, Z., Skarohlid, R., & McGachy, L. (2022). Siderophores: an alternative bioremediation strategy? Science of the Total Environment, 819, 153144. https://doi.org/10.1016/j.scitotenv.2022.153144

Sakariyawo, O. S., Oyedeji, O. E., & Soretire, A. A. (2020). Effect of iron deficiency on the growth, development and grain yield of some selected upland rice genotypes in the rainforest. Journal of Plant Nutrition, 43(6), 851–863. https://doi.org/10.1080/01904167.2020.1711936

Sankari Meena, K. et al. 2019. “Agriculture Application Of.” Plant Growth Promoting Rhizobacteria: 77–93.

Santos, S., Neto, I. F. F., Machado, M. D., Soares, H. M. V. M., & Soares, E. V. (2014). Siderophore production by Bacillus megaterium: Effect of growth phase and cultural conditions. Applied Biochemistry and Biotechnology, 172(1), 549–560. https://doi.org/10.1007/s12010-013-0562-y

Saravanan, V. S., Kumar, M. R., & Sa, T. M. (2011a). Bacteria in Agrobiology: Plant Nutrient Management. Bacteria in Agrobiology: Plant Nutrient Management. https://doi.org/10.1007/978-3-642-21061-7

Saravanan, V. S., Kumar, M. R., & Sa, T. M. (2011b). Microbial Zinc Solubilization and Their Role on Plants. In Bacteria in Agrobiology: Plant Nutrient Management (pp. 47–63). https://doi.org/10.1007/978-3-642-21061-7_3

Saxena, M., Das, A., & Choudhury, S. (2017). Chemical fractionation of zinc and its relationship with important properties of rice grown soils. 5(4), 1205–1211.

Senoura, T., Sakashita, E., Kobayashi, T., Takahashi, M., Aung, M. S., Masuda, H., … Nishizawa, N. K. (2017). The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Molecular Biology, 95(4–5), 375–387. https://doi.org/10.1007/s11103-017-0656-y

Shakeel, M., Rais, A., Hassan, M. N., & Hafeez, F. Y. (2015). Root associated Bacillus sp. improves growth, yield and zinc translocation for basmati rice (Oryza sativa) varieties. Frontiers in Microbiology, 6(NOV), 1–12. https://doi.org/10.3389/fmicb.2015.01286

Sharma, A., Shankhdhar, D., & Shankhdhar, S. C. (2013). Enhancing grain iron content of rice by the application of plant growth promoting rhizobacteria. Plant, Soil and Environment, 59(2), 89–94. https://doi.org/10.17221/683/2012-pse

Sharma, A., Shankhdhar, D., Sharma, A., & Shankhdhar, S. C. (2014). Growth promotion of the rice genotypes by pgprs isolated from rice rhizosphere. Journal of Soil Science and Plant Nutrition, 14(2), 505–517. https://doi.org/10.4067/S0718-95162014005000040

Sharma, Ashish, Patni, B., Shankhdhar, D., & Shankhdhar, S. C. (2013). Zinc - An Indispensable Micronutrient. Physiology and Molecular Biology of Plants, 19(1), 11–20. https://doi.org/10.1007/s12298-012-0139-1

Shrestha, J., Shah, K. K., & Timsina, K. P. (2020). Effects of different fertilizers on growth and productivity of rice (Oryza sativa L.): a review. International Journal of Global Science Research, 7(1), 1291–1301. https://doi.org/10.26540/ijgsr.v7.i1.2020.151

Shrivastava, U. ., & Kumar, A. (2011). A simple and rapid plate assay for the screening of Indole-3-acetic Acid (IAA) producing microorganisms. Appl.Biol. Pharm., 120–123.

Shruti K, Arun K, Y. R. (2013). Potential Plant Growth- Promoting Activity of Rhizobacteria Pseudomonas sp in Oryza sativa Food Waste Managementa cheap source of Lacticc acid produced by Lactobacillus sp. View project. 3(4), 38–50. Retrieved from https://www.researchgate.net/publication/263655828

Singh, Ranjay K., Nancy J. Turner, and C. B. Pandey. 2012. “‘Tinni’ Rice (Oryza Rufipogon Griff.) Production: An Integrated Sociocultural Agroecosystem in Eastern Uttar Pradesh of India.” Environmental Management 49(1): 26–43

Sinha, M. K., & Purcell, W. (2019). Reducing agents in the leaching of manganese ores: A comprehensive review. Hydrometallurgy, 187(February), 168–186. https://doi.org/10.1016/j.hydromet.2019.05.021

Sivakamasundari, R., & Usharani, G. (2012). Studies on the Influence of Pseudomonas fluorescens and Chemicals on the Biocontrol Sheath Blight Incidence in Rice. International Journal of Pharmaceutical & Biological Archives, 3(4), 973–977.

Suda, A., & Makino, T. (2015). Geoderma Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium : A review. https://doi.org/10.1016/j.geoderma.2015.12.017

Takagi, Sei Ichi. 1976. “Naturally Occurring Iron. Chelating Compounds in Oat- and Rice·rootwashings 1. Activity Measurement and Preliminary Characterization.” Soil Science and Plant Nutrition 22(4): 423–33.

Zhang, X., Zhang, D., Sun, W., & Wang, T. (2019). The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. International Journal of Molecular Sciences, 20(10). https://doi.org/10.3390/ijms20102424

Zhang, Y., Xu, Y. H., Yi, H. Y., & Gong, J. M. (2012). Vacuolar membrane transporters OsVIT1 and Os-VIT2 modulate iron translocation between flag leaves and seeds in rice. Plant Journal, 72(3), 400–410. https://doi.org/10.1111/j.1365-313X.2012.05088.x

Cómo citar
Barahona Pico , Y. A., Ortiz Paz , R. A., & López Rayo , S. (2024). Optimizing Iron, Manganese, and Zinc fertilization in rice (Oryza sativa L.) through Bacillus, Pseudomonas, and Azospirillum bacteria. Revista Facultad De Ciencias Básicas, 18(2), 83–101. https://doi.org/10.18359/rfcb.7055


Crossref Cited-by logo
QR Code