La Producción de Metabolitos Secundarios en la Familia Brassicaceae

  • Catalina Vargas-Rincón
  • Gina Sánchez-León
  • Pedro Jiménez-Morales Universidad Militar Nueva Granada
Palabras clave: Brassicaceae, glucosinolatos, metabolismo secundario

Resumen

La familia botánica Brassicaceae no sólo posee una reconocida importancia económica, sino también académica y ecológica. Muchos miembros de esta familia son utilizados como alimento, y varios de ellos también se utilizan como organismos modelo para el estudio del reino Plantae. Una característica resaltante de esta familia es la producción de diversos metabolitos, que pueden conferir ventajas en diferentes papeles ecológicos. Aún cuando posiblemente los más conocidos son los glucosinolatos, otros metabolitos también presentan características interesantes desde los puntos de vista tanto biológico como químico. Esta revisión tiene como objetivo estimular estudios relacionados con las actividades de estos metabolitos y sus posibles aplicaciones en la agricultura.

Descargas

La descarga de datos todavía no está disponible.

Referencias Bibliográficas

Agrios GN. 2005. Plant Pathology. Quinta edición. Elsevier. Burlington. 838 p.

Ahuja I, Kissen R, Bones AM. 2012. Phytoalexins in defense against pathogens. Trends plant sci 17: 73-90.

Aksouh NM, Jacobs BC, Stoddard FL, Mailer RJ. 2001. Response of canola to different heat stresses. Aust J Agr Res 52(8): 817-824.

Anjum NA, Gill SS, Ahmad I, Pacheco M, Duarte AC, Umar S, Khan NA, Pereira ME. 2011. The Plant Family Brassicaceae: An introduction. pp 1-33. En: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA. (Eds.), The Plant Family Brassicaceae. Springer, The Netherlands.

Angelini LG, Moscheni E, Colonna G, Belloni P, Bonari E. 1997. Variation in agronomic characteristics and seed oil composition of new oilseed crops in central Italy. Ind Crop Prod 6: 313-323.

Angus JF, Gardner PA, Kirkegaard JA, Desmarchelier JM. 1994. Biofumigation: Isothiocyanates released from Brassica roots inhibit growth of the take-all fungus. Plant Soil 162:107- 112.

Appel O, Al-Shehbaz IA. 2003. Cruciferae. p 75-174. En: Kubitzki K, Bayer C (Eds.). The families and genera of vascular plants. Springer, New York.

Arras G, Sanna P. 1999. Resistance of citrus fruits to Penicillium italicum. Crop Prot 64: 527-530.

Arrieta JM. 2000. Manejo integrado de malezas en el cultivo de papa. Manual para el cultivo de la papa en Colombia 1: 144-159.

Blažević I, Mastelić J. 2009. Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chem 113: 96-102.

Björkman M, Klingen I, Birch ANE, Bones AM, Bruce TJA, Johansen TJ, Meadow R, Mølmann J, Seljasen R, Smart LE, Stewart D. 2011. Phytochemicals of Brassicaceae in plant protection and human health - Influences of climate, environment and agronomic practice. Phytochem 72: 538-556.

Bodnaryk RP. 1994. Potent effect of jasmonates on índole glucosinolates in oilseed rape and mustard. Phytochem 35 (2): 301-305.

Bodnaryk, R, Yoshihara T. 1995. Structure – activity relationships of cyclopentane analogs of jasmonic acid for induced responses of canola seedling Brassica napus L. J Chem Ecol 21 (11): 1735 – 1743.

Bones AM, Rossiter JT. 2006. The enzymatic and chemically induced decomposition of glucosinolates. Phytochem 67: 1053–1067.

Booth EJ, Walker KC. 1992. The effect of site and foliar sulfuro on oilseed rape: comparison of sulfur responsive and non-responsive seasons. Phyton-Int J Exp Bot 32 (3): 9-13.

Brabban AD, Edwards C. 1995. The effect of glucosinolates and their hydrolisis products on microbial growth. J Appl Bacteriol 79: 171-177.

Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J. 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochem 62: 471–481.

Bruce TJA, Pickett JA. 2007. Plant defence signalling induced by biotic attacks. Curr Op Plant Biol 10: 387-392.

Butcher DN, El-Tigani S, Ingram DS. 1974. The role of indole glucosinolates in the club root disease of the Cruciferae. Physiol Plant Pathol 4: 127-140.

Carbajo MS. 2004. Sistemas alternativos a los fungicidas químicos para el control de Penicillium digitatum (Pers.) Sacc. en limón. Universidad Nacional de Tucumán. Tesis.

Cartea ME, Velasco P, Obregón S, Padilla G, de Haro A. 2008. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochem 69: 403-410.

Chan EKF, Rowe HC, Kliebenstein DJ. 2010. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. Genetics 185:991–1007.

Changdai W. 1984 Studies on chemical constituents in Radish (Raphanus sativus L) Seed II. Shaanxi Xinyiyao 13: 54–55.

Charron CS, Sams CE. 2004. Glucosinolate content and myrosinase activity in rapid cycling Brassica oleracea grown in a controlled environment. J Am Soc Hortic Sci 129: 321–330.

Choudhary DK, Prakash A, Johri BN. 2007. Induced Systemic Resistance (ISR) in plants: mechanism of action. Ind J Microbiol 47:289-297.

Clauss MJ, Dietel S, Schubert G, Mitchell-Olds T. 2006. Glucosinolate and Tricome defense in a natural Arabidopsis lyrata population. J Chem Ecol 32: 2351-2373.

Cole RA. 1997. The relative importance of glucosinolates and amino acids to the development of two aphids pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Entomol Exp Appl 85:121-133.

Conn KI, Tewari JP, Dahiya JS. 1988. Resistance to Alternaria brassicae and phytoalexin-elicitation in rapeseed and other crucifers. Plant Sci 56: 21-25.

Dahiya JS, Rimmer SR. 1988. Phytoalexin accumulation in tissues of Brassica napus inoculated with Leptosphaeria maculans. Phytochem 27(10): 3105-3107.

Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P. 1999. Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomate seedlings. Plant Mol Biol 40: 333-342.

Doughty KJ, Kiddle GA, Pye J, Wallsgrove RM, Pickett JA. 1995. Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochem 38(2): 347-350.

Drobnica L, Zemanová M, Nemec P, Antoš K, Kristián P, Štullerová A, Knoppová V, Nemec P. 1967. Antifungal activity of Isothiocyanates and related compounds. Appl Microbiol 15 (4): 701-709.

Ebel J. 1986. Phytoalexin synthesis: the biochemical analysis of the induction process. Ann Rev Phytopathol 24: 235-264.

Erickson DB, Bassin P. 1990. Rapeseed and crambe: alternative crops with potential industrial uses. Bull Kansas University Agricultural Experiment Station and Cooperative Extension Service 656: 1-33.

Facciola S. 1990. Cornucopia- a source book of edible plants.. Kampong Publications, Vista, CA. 677 p.

Fahey JW, Zhang Y, Talalay P. 1997. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. P Natl Acad Sci USA 94:10367-10372.

Fahey JW, Stephenson KK. 1999. Cancer chemoprotective effects of cruciferous vegetables. Am Soc Hortic Sci 34 (7): 1159-1163.

Franzke A, Lysak M, Al-Shehbaz IA, Koch MA, Mummenhoff K. 2011. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci16(2):108-116.

Fuentes CL, Romero CE. 1991. Una visión del problema de las malezas en Colombia. Agron Colomb 8(2): 364-378.

García R, Pérez L. 2003. Phytoalexins: a plant defense mechanism. Rev Chapingo Ser Cie 9:5 - 10.

Gitz DC, Liu L, McClure JW. 1998. Phenolic metabolism, growth, and UV-B tolerance in phenylalanine ammonia-lyase-inhibed red cabbage seedlings. Phytochem 49(2): 377-386.

Glawischnig E. 2007. Molecules of interest camalexin. Phytochem 68: 401-407.

Hammerschmidt R. 1999. Phytoalexins: What have we learned after 60 years? Ann Rev Phytopathol 37: 285-306.

Haramoto ER, Gallandt ER. 2004. Brassica cover cropping for weed management: a review. Renew Agr Food Syst 19: 187–198.

Harborne J.B. 1999. The comparative biochemistry of phytoalexin induction in plants. Biochem Syst Ecol 27: 335–367.

Hashem FA, Saleh MM. 1999. Antimicrobial components of some Cruciferae plants (Diplotaxis harra Forsk and Erucaria microcarpa Boiss). Phytother Res 13: 329-332.

Heil M, Bostock R. 2002. Induced Systemic Resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89:503-512

Huang BQ, Lou P, Li YW. 1999. Domestication and cultivation of Orychophragmus violaceus as a new oil crop in China. Cruciferae News Eucarpia 21:13-14.

Islam MS. 2008. Biotransformation of the phytoalexins brassinin, brassilexin and camalexin by Alternaria brassicicola. M.Sc.Thesis. University of Saskatchewan, Canada.

Jahangir M, Kim HK, Choi YH, Verpoorte R. 2008. Metabolomic response of Brassica rapa submitted to pre-harvest bacterial contamination. Food Chem 107: 362-368.

Jahangir M, Abdel-Farid IB, Kim HK, Choi YH, Verpoorte R. 2009. Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environ Exp Bot 67(1):23-33.

Johns T, Kitts WD, Newsome F, Towers HN. 1982. Anti-reproductive and other medicinal effects of Tropaeolum tuberosum. J Ethnopharmacol 5: 149-161.

Josefsson E. 1970. Pattern, content and biosynthesis of glucosinolates in some cultivated Cruciferae. Svalöf, Swedish Seed Association, Sweden.

Kaur S, Gupta SK, Sukhija PS, Munshi SK. 1990. Accumulation of glucosinolates in developing mustard (Brassica juncea L.) seeds in response to sulphur applications. Plant Sci 66: 181-184.

Karowe DN, Seimens DH, Mitchell-Olds T. 1997. Species-specific response of glucosinolate content to elevated atmospheric CO2. J Chem Ecol 23: 2569–2582.

Kim SJ, Matsuo T, Watanabe M. 2002. Effect of nitrogen and sulphur application on the glucosinolate content in vegetable turnip rape (Brassica rapa L.). Soil Sci Plant Nutr 48 (1): 43-49.

Kirkegaard JA, Sarwar M. 1998. Biofumigation potential of brassicas. Plant Soil Environ 201:71-79.

Kopsell DE, Kopsell DA, Randle WM, Coolong TW. 2003. Kale carotenoids remain stable while flavor compounds respond to changes in sulfur fertility. J Agr Food Chem 51(18): 5319-5325.

Krishna P. 2003. Brassinosteroid-Mediated Stress Responses. J Plant Growth Regul 22: 289-297.

Kugel RK, Falk KC. 2006. Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can J Plant Sci 86: 1047-1058.

Liang Y, Choi YH, Kim HK, Linthorst HJM, Verpoorte R. 2006. Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochem 67: 2503-2511.

Lichtenthaler HK. 1999. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Phys 50: 47-65.

Lopez-Berenguer C, Matínez-Ballesta MC, García-Viguera C, Carvajal M. 2008. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174: 321-328.

Lo Scalzo R, Genna A, Branca F, Chedin M, Chassaigne H. 2008. Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem 107(1): 136-144.

Ludwig-Müller J, Schubert B, Pieper K, Ihmig S, Hilgenberg W. 1997. Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochem 44(3): 407-414.

Ludvick-Müller J, Krishna P, Forreiter C. 2000. A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic Hsp90 expression after heat stress. Plant Physol 123: 949–958.

Malik MS, Norsworthy JK, Culpepper AS, Riley MB, Bridges Jr. W. 2008 Use of wild radish (Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed Sci 56 (4): 588-595.

Malik MS, Riley MB, Norsworthy JK, Bridges Jr W. 2010. Glucosinolate profile variation of growth stages of wild radish (Raphanus raphanistrum). J Agr Food Chem 58: 3309-3315.

Manici LM, Lazzeri L, Baruzzi G, Leoni O, Galletti S, Palmieri S. 2000. Suppressive activity of some glucosinolate enzyme degradation products on Pythium irregulare and Rhizoctonia solani in sterile soil. Pest Manag Sci 56:921-926.

Mari M, Oiri R, Leoni O, Marchi A. 1993. In vitro activity of glucosinolate-derived isothiocyanates against postharvest fruit pathogens. Ann Appl Biol 123: 155 – 164.

Marinelli FU, Zanelli R. 1995. Toxicity of 6-methoxymellein and 6-hydroxymellein to the producing carrot cells. Phytochem 42: 641-643.

Martinez-Sanchez A, Allende A, Bennett RN, Ferreres F, Gil MI. 2006. Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biol Tech 42: 86-97.

Mastebroek HD, Marvin HJP 2000. Breeding prospects of Lunaria annua L. Ind Crop Prod 11: 139-143.

Mewis I, Appel HM, Hom A, Raina R, Schultz JC. 2005. Major signaling pathways modulate Arabidopsis glucosilonate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138: 1149-1162.

Miles PW. 1999. Aphid Saliva. Biol Rev 74: 41-85.

Mollers C, Nehlin L, Glimelius K, Iqbal MCM. 1999. Influence of in vitro culture conditions on glucosinolate composition of microsporederived embryos of Brassica napus. Physiol Plantarum 107: 441-446.

Monde K, Takasugi M, Shirata A. 1995. Three sulfur containing stress metabolites from Japanese radish. Phytochem 39: 581-2586.

Naznin HA, Kiyohara D, Kimura M, Miyazawa M, Shimizu M, and Hyakumachi M. 2014. Systemic Resistance Induced by Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungi in Arabidopsis thaliana. PLoS ONE 9(1): e86882. doi:10.1371/journal.pone.0086882

Oerlemans K, Barrett DM., Suades CB, Verkerk R., Dekker M. 2006. Thermal degradation of glucosinolates in red cabbage. Food Chem 95: 19–29.

Oku, H, Shiraishi T. 1995. Phytoalexins and host specificity in plant disease. En: Handbook of phytoalexins metabolism and actions. Daniel, M, Purkayastha RP. Editorial Marcel Dekker Inc. USA.

Ortuño A, Báidez A, Gómez P, Arcas MC, Porras I, García-Lidón A, Del Río JA. 2006. Citrus paradisi and Citrus sinensis flavonoids: their influence in the defense mechanism against Penicillium digitatum. Food Chem 98: 351-358.

Pedras MSC, Smith KC. 1997. Sinalexin, a phytoalexin from white mustard elicited by destruxin B and Alternaria brassicae. Phytochem 46(5): 833-837.

Pedras, MSC, Sorensen JL, Okanga FI, Zaharia IL. 1999. Wasalexins A and B, new phytoalexins from wasabi: isolation, synthesis and antifungical activity. Bioorg Med Chem Lett 9: 3015-3020.

Pedras, MSC, Jha M, Ahiahonu PWK. 2003a. The synthesis and biosynthesis of phytoalexins produced by cruciferous plants. Curr Org Chem 7: 1635-1647.

Pedras MSC, Chumala PB, Suchy S. 2003b. Phytoalexins from Thlaspi arvense, a wild crucifer resistant to virulent Leptosphaeria maculans: structures, syntheses, and antifungal activity. Phytochem 64: 949-956.

Pedras MSC, Montaut S, Zaharia IL, Gai Y, Ward DE. 2003c. Transformation of the host-selective toxin destruxin B by wild crucifers: probing a detoxification pathway. Phytochem 64: 957-963.

Pedras MSC, Ahiahonu PWK. 2004. Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus Sclerotinia sclerotiorum. J Chem Ecol 30 (11): 2163-2179.

Pedras MSC, Montaut S, Suchy M. 2004. Phytoalexins from the crucifer rutabaga: structures, syntheses, byosyntheses, and antifungal activity. J Org Chem 69: 4471-4476.

Pedras MSC, Ahiahonu PWK. 2005. Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66: 391-411.

Pedras MSC, Sarwar MG, Suchy M, Adio AM. 2006. The phytoalexins from cauliflower, caulilexins A, B and C: Isolation, structure determination, syntheses and antifungal activity. Phytochem 67: 1503-1509.

Pedras MSC, Gadagi RS, Jha M, Sarma-Mamillapalle VK. 2007. Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase. Phytochem 68: 1572-1578.

Pedras MSC, Zheng Q, Gadagi RS, Rimmer SR. 2008, Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: Differential metabolic responses to the biotroph Alburgo candida and to abiotic stress. Phytochem 69: 894-910.

Pedras MSC, Hossain S, Snitynsky RB. 2011. Detoxification of cruciferous phytoalexins in Spontaneous dimerization of a camalexin metabolite. Phytochem 72: 199-206.

Pérez RM, Pérez R. 2004. Raphanus sativus (Radish):Their chemistry and biology. The Scientific World Journal 4: 811-837.

Plaza GA, Pedraza M. 2007. Reconocimiento y caracterización ecológica de la flora arvense asociada al cultivo de uchuva. Agron Colomb 25(2): 306-313.

Pereira FMV, Rosa E, Fahey JW, Stephenson K, Carvalho R, Aires A. 2002. Influence of temperatura and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes. J Agr Food Chem 50: 6239–6244.

Radovich TJK, Kleinhenz MD, Streeter JG. 2005. Irrigation timing relative to head development influences yield components, sugar levels, and glucosinolate concentrations in cabbage. J Am Soc Hortic Sci 130: 943–949.

Reifenrath K., Müller C. 2007. Species-specific and leaf-age dependent effects of ultraviolet radiation on two Brassicaceae. Phytochem 68: 875-885.

Robbins RJ, Keck AS, Banuelos G, Finley JW. 2005. Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. J Med Food 8 (2): 204-214.

Rodov V, Ben-Yehoshua S, Fang DQ, Kim JJ, Ashkenazi R. 1995. Preformed antifungal compounds of lemon fruit: citral and its relation to disease resistance. Food Chem 43: 1057-1061.

Rouleau M, Marsolais F, Richard M, Nicolle L, Voigt B, Adam G, Varin L. 1999. Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. J Biol Chem 274 (30): 20925-20930.

Sakihama Y, Cohen MF, Grace SC, Yamasaki H. 2002. Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177: 67-80.

Salywon AM, Dierig DA, Rebman JP, de Rodríguez DJ. 2005. Evaluation of new Lesquerella and Physaria (Brassicaceae) oilseed germplasm. Am J Bot 92 (1): 53-62.

Sang JP, Minchinton IR, Johnstone PK, Truscott RJW. 1984. Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can J Plant Sci 64: 77–93.

Schonhof I, Kläring HP, Krumbein A, Clauben W, Schreiner M. 2007. Effect of temperatura increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse-grown broccoli. Agr Ecosyst Environ 119: 103-111.

Siemens DH, Garner SH, Mitchell-Olds T, Callaway RM. 2002. Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology 83: 505-517.

Sikora E, Cieslik E, Leszczynka T, Filipiak-Florkiewicz A, Pisulewski PM. 2008. The Antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chem 107: 55-59.

Smith CJ. 1996. Accumulation of phytoalexins: defence mechanism and stimulus response system. New Phytol 132: 1-45.

Smolinska U, Morra MJ, Knudsen GR, James RL. 2003. Isothiocyanates produced by Brassicaceae species as inhibitors of Fusarium oxysporum. Plant Dis 87: 407- 412.

Sønderby IE, Geu-Flores F, Halkier BA. 2010. Biosynthesis of glucosinolates – gene Discovery and beyond. Trends Plant Sci 15: 283–290.

Song L, Thornaley PJ. 2007. Effect of storage, processing and cooking on glucosinolates content of Brassica vegetables. Food Chem Toxicol 45: 216-224.

Sousa C, Pereira DM, Pereira JA, Bento A, Rodrígues MA, Dopico-García S, Valentao P, Lopes G, Ferreres F, Seabra RM, Andrade PB. 2008. Multivariate analysis of Trochuda cabbage (Brassica oleracea L. var. costata DC) phenolics: influence of fertilizers. J Agr Food Chem 56 (6): 2231-2239.

Soylu S. 2006. Accumulation of cell wall bound phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae. Plant Sci 170: 942-952.

Taiz L, Zeiger E. 2010. Plant Physiology. 5Th edition. The Benjamin/Cummings. Redwood City, California. USA. 115. Takasugi M, Katsui N, Shirata A. 1986. Isolation of three novel sulfur-containing phytoalexins from the Chinese cabbage Brassica campestris L. ssp. pekinensis (Cruciferae). J Chem Soc 1077–1078.

Takasugi M, Monde K, Katsui N, Shirata A. 1987. Spirobrassinin, a novel sulfur-containing phytoalexin from the daikon Rhaphanus sativus L. var. hortensis (Cruciferae). Chem Lett 1631–1632.

Thakur M, Sohal B.S. 2013. Role of elicitors in inducing resistance in plants against pathogen infection: A review. ISRN Biochem 2013:1-10 118- The Plant List, 2013. Version1.1.http://www.theplantlist.org/. Accedida el 18 de abril de 2013.

Troncoso R, Espinosa C, Sánchez-Estrada A, Tiznado ME, García HS. 2005. Analysis of the isothiocyanates present in cabbage leaves extract and their potential application to control Alternaria rot in bell peppers. Food Res Int 38: 701–708.

Vallejo F, Tomás-Barbéran FA, García-Viguera C. 2003. Healt-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period. J Agr Food Chem 51:3029-3034.

Vallejo F, García-Viguera C, Tomás-Barberán FA. 2003. Changes in broccoli (Brassica oleracea L. var. italica) health-promoting compounds with inflorescence development. J Agr Food Chem 51 (13): 3776-3782.

Van-Dam NM, Raaijmakers CE. 2006. Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecol 16: 17-24.

Van-Etten HD, Sandrock RW, Wasmann CC, Soby SD, McCluskey K, Wang P. 1995. Detoxification of phytoanticipins and phytoalexins by phytopathogeni fungi. Can J Bot 73 (1):5518-5525.

Vereecke D, Messens E, Klarskov K, De-Bruyn A, Montagu MV, Goethals K. 1997. Patterns of phenolic compounds in leafy galls of tobacco. Planta Sci 201: 342-348.

Vig AP, Rampal G, Thind TS, Arora S. 2009. Bioprotective effects of glucosinolates – A review. Food Sci Technol Int 42 (10): 1561-1572.

Volden J, Borge GIA, Bengtsson GB, Hansen M, Thygesen IE, Wicklund T. 2008. Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp capitata f. rubra). Food Chem 109: 595-605.

Yaniv Z, Schafferman D, Zur M, Shamir I. 1997. Evaluation of Matthiola incana as a source of omega-3-linolenic acid. Ind Crop Prod 6:285-289.

Walters D. 2010. What defenses do plants use? p 15- 75. En: Walters D. (Ed.). Plant defense: Warding off attack by pathogens, pests and vertebrate hervibores, Wiley-Blackwell, USA.

Warwick SI, Francis A, Al-Shehbaz IA. 2006. Brassicaceae: Specis checklist and database on CD-Rom. Plant Syst Evol 259: 249-258.

Warwick SI. 2011. Brassicaceae in Agriculture. p 33-66. En: Schmidt R, Bancroft I (Eds). Genetics and Genomics of the Brassicaceae. Springer, New York.

Wei K, Zhang F, Zhang Z. 2002. Behavior-modulating plant volatile Chemical for aphids. Chinese Sci Bull 47: 115–117.

Wilson KE, Thompson JE, Huner NPA, Greenberg BM. 2001. Effects of ultraviolet-A exposure on ultraviolet-B-induced accumulation of specific flavonoids in Brassica napus. Photochem Photobiol Sci 73 (6): 678-684.

Winkler S, Farangher J, Franz P, Imsic M, Jones R. 2007. Glucoraphanin and flavonoid levels remain stable during simulated transport and marketing of broccoli (Brassica oleracea var. italica) heads. Postharvest Biol Tec 43: 89-94.

Zhang H, Schonhof I, Krumbein A, Gutezeit B, Li L, Stuzel H, Schreiner M. 2008. Water supply and growing season influence glucosinolate concentration and composition in turnip root (Brassica rapa ssp rapifera L.). J Plant Nutr 171:255–265.

Cómo citar
Vargas-Rincón, C., Sánchez-León, G., & Jiménez-Morales, P. (2014). La Producción de Metabolitos Secundarios en la Familia Brassicaceae. Revista Facultad De Ciencias Básicas, 9(2), 282-305. https://doi.org/10.18359/rfcb.388
Publicado
2014-12-18
Sección
Artículos