Uso de herramientas bioinformáticas en la evaluación de secuencias “DNA barcode” para la identificación a nivel de especie

  • Sulma Paola Vera M Universidad Militar Nueva Granada.
  • Pedro Jiménez M. Universidad Militar Nueva Granada.
  • Liliana Franco-Lara Universidad Militar Nueva Granada.
Palabras clave: Barcode gap, Fusarium, Bioinformática

Resumen

El “DNA barcoding” (código de barras de ADN) es una técnica usada para identificar la especie a la cual pertenece un espécimen biológico, usando una secuencia corta de ADN proveniente de una región estandarizada, la cual se compara con una secuencia de referencia. Los “DNA barcodes” son secuencias relativamente cortas dentro de los genomas de las especies, que se obtienen fácilmente mediante amplificación por PCR. Para que sean precisas, las secuencias “DNA barcode”, deben poseer baja variabilidad intraespecífica y alta variabilidad interespecífica. Para que una secuencia sea oficialmente considerada un “DNA barcode”, debe estar incluida en la base de datos BOLD (The Barcode of Life Data Systems), para lo cual debe pasar estrictos análisis bioinformáticos que valoran su idoneidad. El objetivo de este artículo es hacer una revisión de algunas herramientas bioinformáticas, propuestas por Barcodinglife.org para determinar si una secuencia cumple los requisitos para ser considerada un “DNA barcode”. Estos métodos incluyen la construcción de árboles de genes, determinación del “barcode gap”, estimación de índice de clasificación genealógica, análisis de variabilidad génica, redes de haplotipos, DNA-BAR y BLOG.

Descargas

La descarga de datos todavía no está disponible.

Referencias Bibliográficas

Balech B. 2008. An integrated molecular and morphological study to design a DNA barcode discrimination protocol for Fusarium species involved in dry root disease of citrus. Thesis. International centre for Advanced Mediterranean Agronomic Studies.

Bandelt H., P. Foster and A. Röhl. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37-48.

Bellemain E, T. Carlsen, C. Brochmann, E. Coissac, P. Taberlet and H, Kauserud. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 10:189.

Bertolazzi P., G. Felici, E. Weitschek 2009. Learning to classify species with barcodes. BMC Bioinformatics, 10:S7.

Bittner L., S. Halary, C. Payri, C. Cruaud, B. de Reviers, P. Lopez and E. Bapteste. 2010. Some considerations for analyzing biodiversity using integrative metagenomics and gene networks. Biol. Direct 5:47.

Chu K, C. Li and J. Qi. 2006. Ribosomal RNA as molecular barcodes: a simple correlation analysis without sequence alignment. Bioinformatics 22:1690-1701.

DasGupta B, K. Konwar, I. Mandoiu and A. Shvartsman. 2005. DNA-BAR: distinguisher selection for DNA barcoding. Bioinformatics Applications Note 21: 3424–3426.

Feau N, A. Vialle, M. Allaire, W. Maier and R. Hamelin. 2011. DNA barcoding in the rust genus Chrysomyxa and its implications for the phylogeny of the genus. Mycol. 103:1250-1266.

Felsenstein J. 1981. Evolutionary trends from DNA sequences: A maximun likelihood approach. J. Mol. Evol. 17: 368-376.

Franco-Lara L, CA Soto Argel, M Guzmán Barney. 2009. Detección de los Virus PVX, PVS, PVY y PLRV en la Colección Central Colombiana de Papa por Medio de la Técnica de Inmunoimpresión (IMI). Revista Facultad de Ciencias Básicas, 5(1-2): 130-139.

Frézal L, R. Leblois. 2008. Four years of DNA barcoding: Current advances and prospects. Infect Genet Evol 8: 727-736.

Gálvez E, J. C, S. Restrepo, P. Jiménez, and L. Franco-Lara. 2011. Altenative oxidase gene (AOX I): a good DNA barcoding candidate for the genus Fusarium. Revista Facultad de Ciencias Básicas 2: 204-219.

Gilmore S., T. Gräfenhan, G. Louis-Seiz, and K. Seifert. 2009. Multiple copies of cytochrome oxidase 1 in species of the fungal genus Fusarium. Mol. Ecol. Res. 1:90-8.

Gómez-Zurita J. and A.P. Vogler. 2006. Testing introgressive hybridization hypotheses using statistical network analysis of nuclear and cytoplasmic haplotypes in the leaf beetle Timarcha goettingensis species complex. J. Mol. Evol. 62:421-33.

Hajibabaei M., G. Singer, E. Clare. and P. Hebert. 2007a. Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biol. 5:24.

Hajibabaei M, G.A.C. Singer, P.D.N. Hebert, D.A. Hickey. 2007b. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23:167-172.

Hebert P., A. Cywinska, S. Ball and J. DeWaard. 2003a. Biological identifications through DNA barcodes. Proc R Soc Lond [Biol] 270: 313–321.

Hebert P.D.N., E.H. Penton, J.M. Burns, D.H. Janzen, W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. PNAS 101: 14812–14817.

Hebert P., S. Ratnasingham, J. DeWaard. 2003b. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond [Biol] 270:S596–S599.

Huang T., Y. Yeh and D. Tzeng. 2011. Barcodelike heteroduplex DNA pattern as an aid for rapid identification of anthracnose fungi. New biotechnol. 28:72-78.

Jargeat P, Martos F, Carriconde F, Gryta H, Moreau P and Gardes M. 2010. Phylogenetic species delimitation in ectomycorrhizal fungi and implications for barcoding: the case of the Tricholoma scalpturatum complex (Basidiomycota). Mol. Ecol. 19:5216-5230.

Jensen R. 2009. Phenetics: revolution, reform or natural consequence?. Taxon 58: 50-60.

Kimura M. 1969. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 4:893-903.

Kress W. and D. Erickson. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLOS ONE 2:508.

Kress, W., J., K. J. Wurdack, E.A. Zimmer, L.A. Weigt and D.H. Janzen. 2005. Use of DNA barcodes to identify flowering plants. PNAS 102, 8369-8374.

Lane C.E., C.S. Lindstrom and G.W. Saunders. 2007. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with referenceto the utility of DNA barcoding. Molecular Phylogenetics and Evolution 44: 634–648.

Lefébure T., CJ.. Douady, M. Gouy M. and J. Gilbert. 2006. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol. Phylogenet. Evol. 40: 435-447.

Librado P. and J. Rozas. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452.

Little D. 2011. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability. PLoS ONE 6: e20552.

Mau B., M.A. Newton and B. Larget. 1999. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55:1-12. 30. Meier R., G. Zhang and Ali. 2008. The Use of Mean Instead of Smallest Interspecific Distances Exaggerates the Size of the ‘‘Barcoding Gap’’ and Leads to Misidentification. Syst Biol. 57: 809–813.

Meusnier I., G. Singer, J. Landry, D. Hickey, P.Hebert and M. Hajibabaei. 2008. A universal DNA mini-barcode for biodiversity analysis. Genomics 9:214.

Meyer C. and G. Paulay. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS ONE 3:422

Munch K., W. Boomsma, E. Willerslev and R. Nielsen. 2008. Fast phylogenetic DNA barcoding. Philos. Trans. R. Soc. London [Biol] 363:3997–4002.

Nei M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.

Nichols R. 2001. Gene trees and species trees are not the same. Trends Ecol. Evolut. 16: 358–364.

Ratnasingham, S. and P. Hebert. 2007. BOLD: The Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7:355–364.

Rozas, J. and Rozas, R. 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174-175.

Rubinoff D, Cameron S and Will K. 2006. A genomic perspective on the shortcomings of mitochondrial DNA for "barcoding" identification. J. Hered. 6:581-594

Saitou N. and Nei M. 1987. The neighbor joining method - a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

Sakalidis M., G. Hardy and T. Burgess. 2011. Use of the Genealogical Sorting Index (GSI) to delineate species boundaries in the Neofusicoccum parvum-Neofusicoccum ribis species complex. Mol. Biol. Evol.60:333-344.

Savolainen V., R.S. Cowan, A.P. Vogler, G.K. Roderick and R. Lane. 2005. Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos. Trans. R. Soc. London [Biol] 360: 1850–1811.

Schindel D. and S. Miller. 2005. DNA barcoding a useful tool for taxonomists. Nature 435:17

Seberg O. and G. Petersen. 2009. How many loci does it take to DNA barcode a crocus? PLoS ONE 4:e4598.

Seifert K., R. Samso., J. Dewaard, J. Houbraken, C. Lévesque, J. Moncalvo, G. Louis-Seize and P. Hebert. 2007. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium

as a test case. PNAS 104:3901-3906.

Schuh, R.T. 2000. Biological systematics: principles and applications. Cornell University Press. PP 3 -6.

Smith M., E. Eveleigh, K. Mccann, M. Meril., P. Mc Carthy and K. Van Rooyen. 2011. Barcoding a quantified food web: crypsis, concepts, ecology and hypotheses. PLoS ONE 6: 14424.

Smith M., B. Fisher and P. Hebert. 2005. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos. Trans. R. Soc. London [Biol] 1462: 1825-1834.

Smith M. A., N.E. Woodley, D.H. Janzen, W. Hallwachs and P.D.N. Hebert, 2006. DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). PNAS 103: 3657–3662.

Soltis P. and E. Douglas 2003. Applying the bootstrap in phylogeny reconstruction. Statist.. Science 18: 256-267.

Song H., J. Buhay, M. Whiting and K. Crandall. 2008 Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. PNAS 36:13486-13491.

Stoeckle, M. 2003. Taxonomy, DNA, and the Bar Code of Life. Bio-Science 53:796-797.

Taberlet P., E. Coissac, F. Pompanon, L. Gielly., L. Miquel C., Valentini A., Vermat T., Corthier, C. Brochmann and E., Willerslev E. 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nuc. Acids Res 35:14.

Tajima F. 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585-595.

Tajima F. 1993. Simple methods for testing molecular clock hypothesis. Genetics 135:599-607.

Tamura K., J. Dudley, M. Nei., and S. Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.

Tavares E. and A. Baker. 2008. Single mitochondrial gene barcodes reliably identify sister-species in diverse clades of birds. BMC Evol. Biol 8:81.

Templeton A., E. Boerwinkle and C. Sing. 1987. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics, 117:343-351.

van Velzen R., E. Weitschek, G. Felici and F. Bakker. 2012. DNA barcoding of recently diverged species: relative performance of matching methods. PLoS ONE 7: e30490.

Vargas S., F. Araújo and F. Santos. 2009. DNA barcoding of Brazilian sea turtles (Testudines). Gen. Mol. Biol. 32:608-612.

Vences M., M. Thomas, R. Bonett and D. Vieites. 2005. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philosophical Transactions of the Philos. Trans. R. Soc. London [Biol] 360:1859-1868.

Virgilio M., K. Jordaens, F. Breman, T. Backeljau and M. Meyer. 2012. Identifying insects with incomplete DNA Barcode libraries, african fruit flies (Diptera: Tephritidae) as a test case. PLoS ONE, 7: e31581

Ward R. and B. Holmes. 2007. An analysis of nucleotide and amino acid variability in the barcode region of cytochrome c oxidase I (COX1) in fishes. Molecular Ecology Notes 7:899–907.

Wiemers M. and K. Fiedler. 2006. Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae). Front. Zool. 4:8

Willyard A., R. Cronn and A. Liston. 2009. Reticulate evolution and incomplete lineage sorting among the ponderosa pines. Mol. Phyl. Evol. 52:498-511.

Cómo citar
Vera M, S. P., Jiménez M., P., & Franco-Lara, L. (2016). Uso de herramientas bioinformáticas en la evaluación de secuencias “DNA barcode” para la identificación a nivel de especie. Revista Facultad De Ciencias Básicas, 8(2), 196-209. https://doi.org/10.18359/rfcb.2035
Publicado
2016-09-01
Sección
Artículos
Crossref Cited-by logo

Más sobre este tema