A model for a disrupted mass movement process simulation. A comparison against the infinite slope method

  • Mario Germán Trujillo Vela Pontificia Universidad Javeriana
  • Alfonso Mariano Ramos Cañón Pontificia Universidad Javeriana
Keywords: Disrupted material flows, slope stability, infinite slope method.

Abstract

As an option against typical methods for slope stability analysis, this paper implements a procedure to model material flows from continuum mechanics (Eulerian approach), proposed by Iverson and Denlinger [1]. This methodology involves the behavior of a Newtonian fluid-and-solid mixture whose friction interaction is denoted by the Coulomb law. The momentum equation is simplified in such a way that generates an analytic solution, which was used to perform a sensitivity analysis. The sensitivity analysis shows the most relevant parameters in the model, i.e. slope angle, bedrock friction angle and pore pressure fraction, which govern the slope stability. As a further advantage compared against typical methods of slope stability based on limit equilibrium, the method implemented takes into account not only the field deformation mode but the safety factor, and most importantly, calculates the speed of the sliding mass and distance covered. The results may be used as a partial input to assess both hazard and vulnerability probabilistic of infrastructure impacted by a disrupted material flow.

Author Biographies

Mario Germán Trujillo Vela, Pontificia Universidad Javeriana

Ing. Agrícola, Universidad Surcolombiana. Estudiante Maestría en Hidrosistemas, Pontificia Universidad Javeriana, Bogotá, Colombia

Alfonso Mariano Ramos Cañón, Pontificia Universidad Javeriana
Ing. Civil, Dr. Ing. Instituto Geofísico. Pontificia Universidad Javeriana, Bogotá, Colombia

Downloads

Download data is not yet available.

Languages:

es

Author Biographies

Mario Germán Trujillo Vela, Pontificia Universidad Javeriana

Ing. Agrícola, Universidad Surcolombiana. Estudiante Maestría en Hidrosistemas, Pontificia Universidad Javeriana, Bogotá, Colombia

Alfonso Mariano Ramos Cañón, Pontificia Universidad Javeriana
Ing. Civil, Dr. Ing. Instituto Geofísico. Pontificia Universidad Javeriana, Bogotá, Colombia

References

Iverson R.M., y Denlinger R.P., (2001). Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory. En: Journal of Geophysical Research, Vol. 106(B1), pp. 537-552. http://dx.doi.org/10.1029/2000JB900329

Suárez J., (1998). Deslizaminetos y estabilidad de taludes en zonas tropicales. Universidad Industrial de Santander, Bucaramanga, 540p.

Shrestha B.B., Nakagawa H., Kawaike K., and Baba Y., (2008). Numerical simulation on debris-flow deposition and erosion processes upstream of a check dam with experimental verification. En: Annual of Disas. Prev. Res. Inst., Issue 51 B, pp. 613-623.

Perálvarez J.D., Chacón J., El Hamdouni J., e Irigaray C., (2008). Análisis de susceptibilidad a los movimientos de ladera mediante un SIG en la cuenca vertiente al embalse de Rules, Granada. Madrid, pp.15-27.

IDEAM (2012). Informe de predicción climática y alertas. En: http://www.pronosticosyalertas.gov.co/jsp/loader.jsf?lServicio=Publicaciones&lTipo=publicaciones&lFuncion=loadContenidoPublicacion&id=895 (marzo 7 de 2012).

Vargas R.A., (2000). Seminario estudios de riesgos por fenómenos de remoción en masa;Bogotá D.C. Dirección de Prevención y Atención de Emergencias de Santa Fe de Bogotá.

Denlinger R.P., and Iverson R.M., (2001). Flow of variably fluidized granular masses across three-dimensional terrain 2. Numerical rredictions and experimental test. En: Reviews of Geophysics, Vol. 106, pp. 553-566. http://dx.doi.org/10.1029/2000JB900330

Pudasaini S.P., Wang Y., and Hutter K., (2005). Modelling debris flows down general channels. En: Natural Hazards and Earth System Sciences. Vol. 5, pp. 799-819. http://dx.doi.org/10.5194/nhess-5-799-2005

Iverson R.M., (2005). Debris-flow mechanics. En: Debris-flow hazards and related phenomena, pp. 105-134. http://dx.doi.org/10.1007/3-540-27129-5_6

Rickenmann D., Laigle D.M.B.W., and Hübl J., (2006). Comparison of 2D debris-flow simulation models with field events. En: Computational Geosciences, Vol. 10(2), pp. 241-264. http://dx.doi.org/10.1007/s10596-005-9021-3

Wang C., Li S., and Esaki T., (2008). GIS-based two-dimensional numerical simulation of rainfall-induced debris flow. En: Natural Hazards and Earth System Sciences, Vol. 8, pp. 47-58. http://dx.doi.org/10.5194/nhess-8-47-2008

Quan Luna B., Remaître A., Van Asch Th.W.J., Malet J.P., and Van Westen C.J., (2012). Analysis of debris flows behavior with a one dimensional run-out model incorporating entrainment. En: Engineering Geology, Vol. 128, pp. 63-75. http://dx.doi.org/10.1016/j.enggeo.2011.04.007

Iverson R.M., (1997). The physics of debris flows. Reviews of Geophysics, 35 (3), pp.245-96. http://dx.doi.org/10.1029/97RG00426

How to Cite
Trujillo Vela, M. G., & Ramos Cañón, A. M. (2012). A model for a disrupted mass movement process simulation. A comparison against the infinite slope method. Ciencia E Ingenieria Neogranadina, 22(2), 25–37. https://doi.org/10.18359/rcin.239
Published
2012-12-01
Section
ARTICLES

Altmetric

QR Code

Most read articles by the same author(s)