Uso del exudado de Cedrela odorata Linnaeus en la inhibición de la corrosión por cloruros en concreto reforzado

Resumen

En este trabajo se evaluó el uso del exudado del árbol de cedro en la penetración de los cloruros y la incidencia de corrosión mediante ensayos de potencial eléctrico del acero en el concreto reforzado. Para esto, se evaluó el porcentaje de exudado en la mezcla de 0,3; 0,5; 0,7 y 0,9 % por peso de cemento, bajo relaciones agua/cemento (a/c) de 0,55 y 0,60. Se midió el contenido de cloruros solubles en agua del polvillo de concreto extraído a 0,5, 1,0 y 2,0 cm de profundidad de la probeta de acuerdo con la norma astm C1218/C1218M, mientras que la incidencia de corrosión se determinó a través de la medición de potenciales eléctricos con la norma astm C876. Hubo una incidencia favorable de 0,46 % por peso de concreto al emplear 0,7 % del exudado y una relación a/c 0,55 a la profundidad más cercana al acero respecto a 0,55 % del blanco. La incidencia de corrosión del acero alcanzó a reducirse al 10 % con potenciales mayores a -0,2 V.

Biografía del autor/a

Modesto Barrios-Fontalvo, Universidad de Cartagena

Especialista en Gerencia de Proyectos de Construcción. Universidad de Cartagena, Cartagena, Colombia.

Candelaria Tejada-Tovar, Universidad de Cartagena
Candelaria Tejada Tovar M.sc. en  Ingeniería Ambiental M.sc. en Educación Docente investigadora, Grupo IDAB  Investigación en diseño de procesos y aprovechamiento de biomasas Profesor Titular Programa de Ingeniería Química-Universidad de Cartagena Docente investigador asociado COLCIENCIAS orcid.org/0000-0002-2323-1544
Scopus Author ID: 56694431900 http://scholar.google.com/citations?user=z4t0YFcAAAAJ&hl=es
Ángel Villabona-Ortíz, Universidad de Cartagena

Magister en ingeniería ambiental de la Universidad de Cartagena. Ingeniero químico Universidad Industrial de Santander en 1994. Docente del Departamento de Ingeniería Química de la Universidad de Cartagena. Universidad de Cartagena, Cartagena, Colombia.

Fidel Castillo-Mercado, Universidad de Cartagena

Ingeniero Civil, Universidad de Cartagena. Cartagena, Colombia.

Breiner Ramírez-Arenilla, Universidad de Cartagena

Ingeniero Civil, Universidad de Cartagena. Cartagena, Colombia.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Modesto Barrios-Fontalvo, Universidad de Cartagena

Especialista en Gerencia de Proyectos de Construcción. Universidad de Cartagena, Cartagena, Colombia.

Candelaria Tejada-Tovar, Universidad de Cartagena
Candelaria Tejada Tovar M.sc. en  Ingeniería Ambiental M.sc. en Educación Docente investigadora, Grupo IDAB  Investigación en diseño de procesos y aprovechamiento de biomasas Profesor Titular Programa de Ingeniería Química-Universidad de Cartagena Docente investigador asociado COLCIENCIAS orcid.org/0000-0002-2323-1544
Scopus Author ID: 56694431900 http://scholar.google.com/citations?user=z4t0YFcAAAAJ&hl=es
Ángel Villabona-Ortíz, Universidad de Cartagena

Magister en ingeniería ambiental de la Universidad de Cartagena. Ingeniero químico Universidad Industrial de Santander en 1994. Docente del Departamento de Ingeniería Química de la Universidad de Cartagena. Universidad de Cartagena, Cartagena, Colombia.

Fidel Castillo-Mercado, Universidad de Cartagena

Ingeniero Civil, Universidad de Cartagena. Cartagena, Colombia.

Breiner Ramírez-Arenilla, Universidad de Cartagena

Ingeniero Civil, Universidad de Cartagena. Cartagena, Colombia.

Referencias Bibliográficas

R. Huza, "The durability and service life benefits of stainless steel rebar and the underpinning properties and features-A stainless industry primer for owners, planners, specifiers, and designers on the technical and market realities," in IABSE Symp. Rep., 2018, vol. 109, no. 56, pp. 880-887.

X. Shi, N. Xie, K. Fortune, and J. Gong, "Durability of steel-reinforced concrete in chloride environments: An overview," Constr. Build. Mater., vol. 30, pp. 125- 38, May 2012, doi: 10.1016/j.conbuildmat.2011.12.038

https://doi.org/10.1016/j.conbuildmat.2011.12.038

M. Quraishi, D. Nayak, R. Kumar, and V. Kumar, "Corrosion of Reinforced Steel in Concrete and Its Control: An overview," J. Steel Struct. Constr., vol. 03, no. 01, pp. 1-6, 2017, doi: https://doi.org/10.4172/2472- 0437.1000124

https://doi.org/10.4172/2472-0437.1000124

A. M. Aguirre and R. Mejía de Gutiérrez, "Durabilidad del hormigón armado expuesto a condiciones agresi- vas," Mater. Construcc., vol. 63, no. 309, pp. 7-38, Mar. 2013, doi: 10.3989/mc.2013.00313.

https://doi.org/10.3989/mc.2013.00313

P. Zhang et al., "Steel reinforcement corrosion in con- crete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation," Constr. Build. Mater., vol. 148, pp. 113 -121, Sep. 2017, doi: 10.1016/j.conbuildmat.2017.05.078

https://doi.org/10.1016/j.conbuildmat.2017.05.078

R. Wattanapornprom and T. Ishida, "Modeling of chlo- ride penetration into concrete under airborne chlori- de environmental conditions combined with washout effects," J. Adv. Concr. Technol., vol. 15, no. 3, pp. 126 -142, 2017, doi: doi.org/10.3151/jact.15.126

https://doi.org/10.3151/jact.15.126

Y. Liu et al., "Effect of ginger extract as green inhibi- tor on chloride-induced corrosion of carbon steel in simulated concrete pore solutions," J. Clean. Prod., vol. 214, pp. 298 -307, Mar. 2019, doi: 10.1016/j.jcle- pro.2018.12.299

https://doi.org/10.1016/j.jclepro.2018.12.299

E. Alibakhshi, M. Ramezanzadeh, S. A. Haddadi, G. Bahlakeh, B. Ramezanzadeh, and M. Mahdavian, "Persian Liquorice extract as a highly efficient sus- tainable corrosion inhibitor for mild steel in sodium chloride solution," J. Clean. Prod., vol- 210, pp. 660 -672, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.053

https://doi.org/10.1016/j.jclepro.2018.11.053

J. O. Okeniyi, A. P. I. Popoola, and C. A. Loto, "Corro- sion-inhibition and compressive-strength performan- ce of Phyllanthus muellerianus and triethanolamine on steel-reinforced concrete immersed in saline/marine simulating-environment," Energy Procedia, vol. 119, pp. 972 -979, Jul. 2017, doi: 10.1016/j.egypro.2017.07.130

https://doi.org/10.1016/j.egypro.2017.07.130

C. Xiong et al., "Preparation of phytic acid conver- sion coating and corrosion protection performances for steel in chlorinated simulated concrete pore solu- tion," Corros. Sci., vol. 139, pp. 275 -288, Jul. 2018, doi: 10.1016/j.corsci.2018.05.018

https://doi.org/10.1016/j.corsci.2018.05.018

M. G. Stewart and E. Bastidas-Arteaga, Corrosion of concrete and steel structures in a changing climate. El- sevier Inc., 2019.

https://doi.org/10.1016/B978-0-12-816782-3.00004-8

A. Castañeda, "Estudio de la corrosión atmosférica del acero de refuerzo embebido en el hormigón armado en La Habana," Ph.D. Dissertation, Inst. Sup. Politec. José Antonio Echeverría, Havana, Cuba, 2013.

K. Nasr, M. Fedel, K. Essalah, F. Deflorian, and N. Souissi, "Experimental and theoretical study of Matri- caria recutita chamomile extract as corrosion inhibi- tor for steel in neutral chloride media," Anti-Corros. Method. Mater., vol. 65, no. 3, pp. 292 -309, May 2018, doi: 10.1108/acmm-12-2017-1869

https://doi.org/10.1108/ACMM-12-2017-1869

I. Elmiziani, S. Houbairi, M. Essahli, S. Lhaloui, and A. Lamiri, "Lead corrosion inhibition by Cedrus at- lantica as a green inhibitor in 0.1M Na2CO3 solution," Int. J. Adv. Chem., vol. 5, no. 1, p. 1, Jan. 2017, doi: 10.14419/ijac.v5i1.7115

https://doi.org/10.14419/ijac.v5i1.7115

V. I. Vorobyova, M. I. Skiba, and I. M. Trus, "Apricot pomaces extract (Prunus armeniaca l.) as a highly effi- cient sustainable corrosion inhibitor for mild steel in sodium chloride solution," Int. J. Corros. Scale Inhib., vol. 8, no. 4, Dec 2019, doi: 10.17675/2305-6894-2019- 8-4-15

https://doi.org/10.17675/2305-6894-2019-8-4-15

W. Wang et al., "Employing ginger extract as an eco-friendly corrosion inhibitor in cementitious mate- rials," Constr. Build. Mater., vol. 228, pp. 116713, Dec. 2019, doi: 10.1016/j.conbuildmat.2019.116713

https://doi.org/10.1016/j.conbuildmat.2019.116713

E. Quiñones, Y. Garcia, and W. Mendez, "Evaluación de la corrosión de acero de refuerzo frente al ambien- te salino y ensayo preliminar de un ecoinhibidor para retardar el proceso corrosivo," in XIII Congr. Nac. Corros./IV Congr. Int. Mater. Integridad Estructural, ASCOR 2016, Jan. 2016.

Z. Zhang, H. Ba, Z. Wu, and Y. Zhu, "The inhibition mechanism of maize gluten meal extract as green inhibitor for steel in concrete via experimental and theoretical elucidation," Constr. Build. Mater., vol. 198, pp. 208-298, Feb. 2019, doi: 10.1016/j.conbuild- mat.2018.11.216

https://doi.org/10.1016/j.conbuildmat.2018.11.216

S. P. Palanisamy, G. Maheswaran, A. G. Selvarani, C. Kamal, and G. Venkatesh, "Ricinus communis-A green extract for the improvement of anti-corrosion and mechanical properties of reinforcing steel in con- crete in chloride media," J. Build. Eng., vol. 19, pp. 376-383, Sep. 2018, doi: 10.1016/j.jobe.2018.05.020

https://doi.org/10.1016/j.jobe.2018.05.020

E. F. Hernández, P. F. D. J. Cano-Barrita, F. M. León-Martínez, and A. A. Torres-Acosta, "Performan- ce of cactus mucilage and brown seaweed extract as a steel corrosion inhibitor in chloride contaminated alkaline media," Anti-Corros. Method. Mater., vol. 64, no. 5, pp. 529-539, Sep. 2017, doi: 10.1108/acmm-02- 2016-1646

https://doi.org/10.1108/ACMM-02-2016-1646

J. O. Okeniyi, C. A. Loto, and A. P. I. Popoola, "Rhi- zophora mangle L. Effects on steel-reinforced concrete in 0.5 M H2SO4: Implications for corrosion-degrada- tion of wind-energy structures in industrial environ- ments," Energy Procedia, vol. 50, pp. 429-436, 2014, doi: 10.1016/j.egypro.2014.06.052

https://doi.org/10.1016/j.egypro.2014.06.052

Y.P.Asmara,T.Kurniawan,A.G.E.Sutjipto,andJ. Jafar, "Application of plants extracts as green corrosion inhibitors for steel in concrete-A review," Indones. J. Sci. Technol., vol. 3, no. 2, pp. 158-170, Aug. 2018, doi: 10.17509/ijost.v3i2.12760

https://doi.org/10.17509/ijost.v3i2.12760

R. Anitha, S. Chitra, V. Hemapriya, I. M. Chung, S. H. Kim, and M. Prabakaran, "Implications of eco-addi- tion inhibitor to mitigate corrosion in reinforced ste- el embedded in concrete," Constr. Build. Mater., vol. 213, pp. 246-256, Jul. 2019, doi: 10.1016/j.conbuild- mat.2019.04.046

https://doi.org/10.1016/j.conbuildmat.2019.04.046

M. Ramezanzadeh, G. Bahlakeh, Z. Sanaei, and B. Ramezanzadeh, "Studying the Urtica dioica leaves ex- tract inhibition effect on the mild steel corrosion in 1 M HCl solution: Complementary experimental, ab ini- tio quantum mechanics, Monte Carlo and molecular dynamics studies," J. Mol. Liq., vol. 272, pp. 120-136, Dec. 2018, doi: 10.1016/j.molliq.2018.09.059

https://doi.org/10.1016/j.molliq.2018.09.059

N. Raghavendra, "Latest Exploration on Natural Co- rrosion Inhibitors for Industrial Important Metals in Hostile Fluid Environments: A Comprehensive Over- view," J Bio Tribo-Corros., vol. 5, no. 3, p. 54, 2019, doi: 10.1007/s40735-019-0240-x

https://doi.org/10.1007/s40735-019-0240-x

O. A. Adetunji and M. A. Odeniyi, "Material and Compression Properties of Cedrela odorata Gum Co-Processed with Plantain Starch and Microcrysta- lline Cellulose," Polim. Med., vol. 46, no. 1, pp. 35-43, 2016, doi: 10.17219/pim/64924

https://doi.org/10.17219/pim/64924

R. Acevedo Barrios, "Diagnóstico preeliminar am- biental de playas de Cartagena de Indias, Caribe co- lombiano," Tek. Rev. Cient., vol. 17, no. 1, p. 38, Jul. 2017, doi: 10.25044/25392190.891

https://doi.org/10.25044/25392190.891

A. Carvajal Guerra and F. Guzmán, "Estudio de aditi- vos inhibidores de corrosión para estructuras de hor- migón armado. Análisis de potencial de corrosión," Rev. Construcc., vol. 4, no. 2, pp. 25-29, Dec. 2005,

N. P. Vaddey, M. Shakouri, and D. Trejo, "Predicting chloride testing outcome of different cementitious sys- tems," ACI Mater. J., vol. 117, no. 1, pp. 139-151, 2020.

https://doi.org/10.14359/51719149

D. Meng, S. Lin, and H. Azari, "Nondestructive

Corrosion Evaluation of Reinforced Concrete Bridge Decks with Overlays: An Experimental Study," J. Test. Eval., vol. 48, no. 1, pp. 516-537, Jan. 2020. Available: https://www.redalyc.org/pdf/1276/127619745003.pdf

https://doi.org/10.1520/JTE20180388

Frank E. Grubbs, "Procedures for Detecting Outlying Observations in Samples," Techno- metrics, vol. 11, no. 1, pp. 1-21, Feb. 1969, doi: 10.1080/00401706.1969.10490657

https://doi.org/10.1080/00401706.1969.10490657

F. E. Grubbs, "Sample Criteria for Testing Outlying Observations," Ann. Math. Stat., vol. 21, no. 1, pp. 27- 58, Mar. 1950, doi: 10.1214/aoms/1177729885

https://doi.org/10.1214/aoms/1177729885

Título C: Concreto estructural, NCR10-Reglamento Colombiano de Construcción Sismo Resistente, Aso- ciación Colombiana de Ingeniería Sísmica, Colombia, 2010.

C. Fu, H. Ye, N. Jin, and Y. Huang, "Chloride Pene- tration in Reinforced Concrete Beams under Combi- ned Sustained Loading and Drying-Wetting Cycles," J. Mater. Civ. Eng., vol. 34, no. 2, p. 04020025, Apr. 2020, doi: 10.1061/(asce)mt.1943-5533.0003076

https://doi.org/10.1061/(ASCE)MT.1943-5533.0003076

H. Ye, C. Fu, N. Jin, and X. Jin, "Influence of flexu- ral loading on chloride ingress in concrete subjected to cyclic drying-wetting condition," Comput. Concr., vol. 15, no. 2, pp. 183-198, Feb. 2015, doi: 10.12989/ cac.2015.15.2.183

https://doi.org/10.12989/cac.2015.15.2.183

X. Gang, L. Yun-Pan, S. Yi-Biao, and X. Ke, "Chloride ion transport mechanism in concrete due to wetting and drying cycles," Struct. Concr., vol. 16, no. 2, pp. 289-296, Jun. 2015, doi: 10.1002/suco.201400035

https://doi.org/10.1002/suco.201400035

J. Cai, M. Li, Q. Chen, J. Lai, and M. Wei, "Chloride ingression in reinforced concrete beams subjected to flexural loading under cyclic drying-wetting condi- tion," J. Cent. South Univ. Sci. Technol., vol. 50, no. 11, pp. 2840-2850, 2019.

H. Ye, X. Jin, C. Fu, N. Jin, Y. Xu, and T. Huang, "Chloride penetration in concrete exposed to cyclic drying-wetting and carbonation," Constr. Build. Ma- ter., vol. 112, pp. 457-463, Jun. 2016, doi: 10.1016/j.con- buildmat.2016.02.194

https://doi.org/10.1016/j.conbuildmat.2016.02.194

C. M. Ikumapayi, "Development of a short time mo- del for predicting chloride ingress into normal and pozzolanic concrete," IOP Conf. Ser. Mater. Sci. Eng., vol. 640, no. 012113, Nov. 2019, doi: 10.1088/1757- 899x/640/1/012113

https://doi.org/10.1088/1757-899X/640/1/012113

M. H. Tadayon, M. Shekarchi, and M. Tadayon, "Long-term field study of chloride ingress in concretes containing pozzolans exposed to severe marine tidal zone," Constr. Build. Mater., vol. 123, pp. 611-616, Oct. 2016, doi: 10.1016/j.conbuildmat.2016.07.074

https://doi.org/10.1016/j.conbuildmat.2016.07.074

S. D. R. Mariscal-Lucero, M. Rosales-Castro, V. Sán- chez-Monsalvo, and J. A. Honorato-Salazar, "Eva- luación de fenoles y limonoides en hojas de Cedrela odorata (Meliaceae) de una plantación experimen- tal establecida en Tezonapa Veracruz, México," Rev. Biol. Trop., vol. 63, no. 2, pp. 545-558, Dec. 2014, doi: 10.15517/rbt.v63i2.15405

https://doi.org/10.15517/rbt.v63i2.15405

L. Hou et al., "A Combined Inhibiting Effect of So- dium Alginate and Sodium Phosphate on the Corro- sion of Magnesium Alloy AZ31 in NaCl Solution," J. Electrochem. Soc., vol. 163, no. 8, pp. C486-C494, 2016, doi: 10.1149/2.0941608jes

https://doi.org/10.1149/2.0941608jes

A. Biswas, P. Mourya, D. Mondal, S. Pal, and G. Uda- yabhanu, "Grafting effect of gum acacia on mild steel corrosion in acidic medium: Gravimetric and electro- chemical study," J. Mol. Liq., vol. 251, pp. 470-479, Feb. 2018, doi: 10.1016/j.molliq.2017.12.087

https://doi.org/10.1016/j.molliq.2017.12.087

M. Messali et al., "Guar gum as efficient non-toxic inhibitor of carbon steel corrosion in phosphoric acid medium: Electrochemical, surface, DFT and MD si- mulations studies," J. Mol. Struct., vol. 1145, pp. 43-54, Oct. 2017, doi: 10.1016/j.molstruc.2017.05.081

https://doi.org/10.1016/j.molstruc.2017.05.081

I. Pradipta, D. Kong, and J. B. L. Tan, "Natural organic antioxidants from green tea form a protective layer to inhibit corrosion of steel reinforcing bars embedded in mortar," Constr. Build. Mater., vol. 221, pp. 351-362, Oct. 2019, doi: 10.1016/j.conbuildmat.2019.06.006

https://doi.org/10.1016/j.conbuildmat.2019.06.006

S. A. Abdulsada and T. I. Török, "Studying effect of addition green inhibitor on compression strength of reinforced concrete," IOP Conf. Ser. Mater. Sci. Eng., vol. 613, no. 1, pp. 3-7, Nov. 2019, doi: 10.1088/1757- 899x/613/1/012024

https://doi.org/10.1088/1757-899X/613/1/012024

A. Mathina and R. Rajalakshmi, "Corrosion inhibi- tion of mild steel in acid medium using Canna indi- ca as green corrosion inhibitor,"rasayan J. Chem., vol. 9, no. 1, pp. 56-66, 2016. Available: http://rasayan- journal.co.in/vol-9/issue-1/9_Vol.9,%20No.1,%2056- 66,%20Jan.-March,%202016,%20RJC-1373.pdf

M. Hegde and S. P. Nayak, "Aqueous extract of Dille- nia Pentagyna Fruit as green inhibitor for mild steel corrosion in 0.5 M hydrochloric acid solution," J. Ma- ter. Environ. Sci., vol. 10, no. 1, pp. 22-31, 2019. Avai- lable: https://www.jmaterenvironsci.com/Document/ vol10/vol10_N1/3-JMES-Hegde-2019.pdf

D. B. Left, M. Zertoubi, S. Khoudali, and M. Azzi, "New application of Chamaerops humilis L. extract as a green corrosion inhibitor for reinforcement steel in a simulated carbonated concrete pore solution," Port. Electrochim. Acta, vol. 36, no. 4, pp. 249-257, 2018, doi: 10.4152/pea.201804249

https://doi.org/10.4152/pea.201804249

P. Dohare, D. S. Chauhan, and M. A. Quraishi, "Ex- pired podocip drug as potential corrosion inhibitor for carbon steel in acid chloride solution," Int. J. Corros. Scale Inhib., vol. 7, no. 1, pp. 25-37, Feb. 2018, doi: 10.17675/2305-6894-2018-7-1-3

https://doi.org/10.17675/2305-6894-2018-7-1-3

Cómo citar
Barrios-Fontalvo, M., Tejada-Tovar, C., Villabona-Ortíz, Ángel, Castillo-Mercado, F., & Ramírez-Arenilla, B. (2020). Uso del exudado de Cedrela odorata Linnaeus en la inhibición de la corrosión por cloruros en concreto reforzado. Ciencia E Ingeniería Neogranadina, 30(2), 9-20. https://doi.org/10.18359/rcin.4423
Publicado
2020-12-09
Sección
Artículos
Crossref Cited-by logo