Evaluación del daño por carburización de un tubo retirado de servicio de un horno de pirólisis

  • Jaqueline Saavedra Rueda Instituto Colombiano del Petróleo
  • Juan Carlos Amézquita García Universidad Industrial de Santander, Colombia
  • Laura María Díaz Burgos Universidad Industrial de Santander
  • Dionisio Laverde Cataño Universidad Industrial de Santander
  • Francisco Javier Bolívar Osorio Universidad de Antioquia
  • Francisco Javier Pérez Trujillo Universidad Complutense de Madrid
Palabras clave: pirólisis, carburización, microestructura, HP40, corrosión

Resumen

La pirólisis de hidrocarburos es un proceso que se caracteriza por llevarse a cabo durante largos períodos de tiempo a temperaturas superiores a los 843° C y atmósferas altamente reductoras. Dichas condiciones severas contribuyen al deterioro por carburización de los serpentines de los hornos en donde ocurre el proceso de rotura térmica por pirólisis, de los hidrocarburos. En este trabajo, se evaluó el estado de daño de un tramo de serpentín de la zona radiante de un horno de pirólisis de etano para la producción de etileno. El tubo fue retirado del servicio del horno de pirólisis debido a la coquización presente en su interior. Posteriores análisis de Microscopia Electrónica de Barrido, análisis metalográfico, análisis de composición química, análisis de dureza y microdureza, permitieron evaluar el estado de daño por carburización.

Biografía del autor/a

Jaqueline Saavedra Rueda, Instituto Colombiano del Petróleo
Ing. Química, M. Sc .Ingeniería Química, Instituto Colombiano del Petróleo, ECOPETROL S.A, Piedecuesta, Colombia.
Juan Carlos Amézquita García, Universidad Industrial de Santander, Colombia
Ing. Químico, Universidad Industrial de Santander, Colombia.
Laura María Díaz Burgos, Universidad Industrial de Santander
Ing. Química, Universidad Industrial de Santander, Colombia.
Dionisio Laverde Cataño, Universidad Industrial de Santander
Ing. Metalúrgico, Doctor Ingeniería Metalúrgica, Universidad Industrial de Santander, Colombia.
Francisco Javier Bolívar Osorio, Universidad de Antioquia
Ing. Metalúrgico, Doctor Ingeniería Metalúrgica, Universidad de Antioquia, Colombia.
Francisco Javier Pérez Trujillo, Universidad Complutense de Madrid
Químico, Doctor Ingeniería Metalúrgica, Universidad Complutense de Madrid, España.

Descargas

Los datos de descargas todavía no están disponibles.

Lenguajes:

es

Biografía del autor/a

Jaqueline Saavedra Rueda, Instituto Colombiano del Petróleo
Ing. Química, M. Sc .Ingeniería Química, Instituto Colombiano del Petróleo, ECOPETROL S.A, Piedecuesta, Colombia.
Juan Carlos Amézquita García, Universidad Industrial de Santander, Colombia
Ing. Químico, Universidad Industrial de Santander, Colombia.
Laura María Díaz Burgos, Universidad Industrial de Santander
Ing. Química, Universidad Industrial de Santander, Colombia.
Dionisio Laverde Cataño, Universidad Industrial de Santander
Ing. Metalúrgico, Doctor Ingeniería Metalúrgica, Universidad Industrial de Santander, Colombia.
Francisco Javier Bolívar Osorio, Universidad de Antioquia
Ing. Metalúrgico, Doctor Ingeniería Metalúrgica, Universidad de Antioquia, Colombia.
Francisco Javier Pérez Trujillo, Universidad Complutense de Madrid
Químico, Doctor Ingeniería Metalúrgica, Universidad Complutense de Madrid, España.

Referencias bibliográficas

HM Tawancy (1993). Structure and properties of high-temperature alloys: applications of analytical electron microscopy. Dhahran (Saudi Arabia): KFUPM. Press., pp 98-99.

Kaishu Guan, Hong Xu, Zhiwen Wang (2005). Quantitative study of creep cavity area of HP40 furnace tubes. En: Nuclear Engineering and Design, Vol. 235, pp.1447-1456. http://dx.doi.org/10.1016/j.nucengdes.2005.01.009

C. D. B. Meadowcroft y J. E. Oakey (1995). Guidelines for Plant Measurement of High Temperature Corrosion. En: European Federation of corrosion Publications, Vol. 14, pp. 1-9

Damage Mechanisms Affecting Fixed Equipment in the Refining Industry, APIRP-571, Recommended practice 571, December 2003. En: American Petroleum Institute, First edition, pp. 3-270.

ASTM G79–83 (Reapproved 1996). Standard Practice for Evaluation of Metals Exposed to Carburization Environments1.

T. Maeda, F. X Terwijn (2005). Carburization resistance of high-CR, high-Ni Weld overlayed furnace tubes for ethylene pyrolysis. En: Ethylene Producers Conference, Vol 14. Session 47.

H. M. Tawancy (2009). Degradation of mechanical strength of pyrolysis furnace tubesby high-temperature carburization in a petrochemical plant. En: Engineering Failure Analysis, Vol. 16, Issue 7 pp. 2171-2178. http://dx.doi.org/10.1016/j.engfailanal.2009.02.009

ASTM E – 415-08 Standard Test Method for Atomic Emission Vacuum Spectrometric Analysis of Carbon and Low-Alloy Steel1.

ASTM E 10–08 "Standard Test Method for Brinell Hardness of Metallic Materials".

ASTM E-3 de 2001Rv 07 "Standard Practice for Preparation of Metallographic Specimens".

ASM American Society for Materials (1985). En: Metal Handbook, Properties and selection: Stainless steel. Vol 3.

ECOPETROL, (2010). Instituto Colombiano del Petróleo ICP, Laboratorio de microscopia electrónica, Instituto Colombiano del Petróleo. Informe 10000048 ID0146 T67 10 103-ECP, Piedecuesta.

ASTM E384-10e2. Standard Test Method for knoop and Vickers hardness of materials.

B. Terry, J. Wright, D. Hall (1989). A model for prediction of carburization in steels for ethylene production furnaces. En: Corrosion Science, Vol 29, Issue 6, pp. 717-734. http://dx.doi.org/10.1016/0010-938x(89)90109-1

I.C. Silva, J.M.A. Rebello, A.C. Bruno, P.J. Jacques, B. Nystend and J. Dillee (2008). Structural and magnetic characterization of a carburized cast austenitic steel. En: Science Direct, Scripta Materialia, Vol 59. Issue 9, pp. 1010-1013. http://dx.doi.org/10.1016/j.scriptamat.2008.07.015

ASTM A-297 de 1997 (R-2003). Standard Specification for Steel castings, IronChromium and Iron-Chromium-Nickel, Heat Resistant, for General Application.

ECOPETROL S.A., (2010). Instituto Colombiano del Petróleo ICP, Laboratorio de Ingeniería de materiales. Ensayos de laboratorio a dos tuberías metálicas, Piedecuesta

R. Kirchheiner, J. L. Jimenez Soler (2001). Correlation and Control of Oxidation, Carburization, and Metal Dusting in High Performance Alloys for the Petrochemical Industry. En: Corrosion 2001 NACE International, paper 01374.

J. Aguilar, U. Ortiz, J. Cavazos, R. Viramontes, (1995). Carburización de aleaciones HP40+Nb y AISI 304 bajo mezclas H2, H2O, CO, CO2 Y CH4. En: México. Evento: XVII Simposio Nacional de Siderurgia.

D. Alessio, (2009). Microestructura y propiedades a altas temperaturas en el acero hp 40 modificado. En: SAM-CONAMET, pp, 1091-1097.

P. Jacquet, D.R. Rousse, G. Bernard, M. Lambertin (2002). A novel technique to monitor carburizing processes. En: Materials Chemistry and Physics, Vol 77, Issue 2, pp. 542-551.

R. Joseph Davis. ASM specialty handbook HEAT RESISTANT MATERIALS, ASM international, pp 203.

Cómo citar
Saavedra Rueda, J., Amézquita García, J. C., Díaz Burgos, L. M., Laverde Cataño, D., Bolívar Osorio, F. J., & Pérez Trujillo, F. J. (2010). Evaluación del daño por carburización de un tubo retirado de servicio de un horno de pirólisis. Ciencia E Ingeniería Neogranadina, 20(2), 19–30. https://doi.org/10.18359/rcin.1481
Publicado
2010-12-01
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code