Metodologías de diseño de pavimentos flexibles: Tendencias, alcances y limitaciones

  • Hugo Alexander Rondón Quintana Universidad Católica de Colombia
  • Fredy Alberto Reyes Lizcano Pontificia Universidad Javeriana
Palabras clave: metodologías de diseño de pavimentos, métodos empíricos, métodos analíticos, programas de elementos finitos, micromecánica, materiales granulares

Resumen

El artículo presenta los tipos de metodologías para el análisis y diseño de estructuras de pavimentos flexibles en el mundo, las tendencias actuales y el avance de herramientas computacionales en la ingeniería de pavimentos. Se discuten los alcances y limitaciones de dichas metodologías y tendencias, haciendo énfasis en el comportamiento de materiales granulares que conforman capas de base y subbase. Además se realiza una discusión crítica sobre la forma como el método de diseño colombiano evalúa el fenómeno de deformación permanente en estructuras de pavimentos flexibles.

Biografía del autor/a

Hugo Alexander Rondón Quintana, Universidad Católica de Colombia

Ing. Civil, M.Sc., Docente, Facultad de Ingeniería Civil, Investigador Grupo de Pavimentos y Materiales de Ingeniería.
Universidad Católica de Colombia, Bogotá D.C., Colombia.

Fredy Alberto Reyes Lizcano, Pontificia Universidad Javeriana

Ing. Civil, Ph.D., Departamento de Ingeniería Civil, Investigador Grupo CECATA. Pontificia Universidad Javeriana, Bogotá D.C., Colombia.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Hugo Alexander Rondón Quintana, Universidad Católica de Colombia

Ing. Civil, M.Sc., Docente, Facultad de Ingeniería Civil, Investigador Grupo de Pavimentos y Materiales de Ingeniería.
Universidad Católica de Colombia, Bogotá D.C., Colombia.

Fredy Alberto Reyes Lizcano, Pontificia Universidad Javeriana

Ing. Civil, Ph.D., Departamento de Ingeniería Civil, Investigador Grupo CECATA. Pontificia Universidad Javeriana, Bogotá D.C., Colombia.

Referencias Bibliográficas

AASHTO – American Association of State Highway and Transportation Officials. (1986). Guide for Design of Pavement Structures, Washington, D. C.

AASHTO – American Association of State Highway and Transportation Officials. (1993). Guide for Design of Pavement Structures, Washington, D. C.

AI - Asphalt Institute. (1982). Research and Development of the Asphalt Institute’s Thickness Design Manual MS – 1, 9th Ed., College Park, Md.

ALONSO-MARROQUIN, F., GARCIA-ROJO, R. & HERRMANN, H. J. (2004). Micromechanical Investigation of granular ratcheting. En:Proceedings of the International Conference on Cyclic Behavior of Soils and Liquefaction Phenomena, Bochum (Germany). pp. 3-9.

ALONSO-MARROQUÍN, F. & HERMANN, H. J. (2004). Ratcheting of Granular Materials. En: The American Physical Society. Vol. 92, No.5, 054301.

ARCHILLA, A. R. & MADANAT, S. (2002). Estimation of Rutting Models by Combining Data from Different Sources. En: Journal of Transportation Engineering, 127 (5). pp. 379 – 389.

AUSTROADS. (1992). Pavement Design – A Guide to the Structural Design of Road Pavement. Austroads, Sydney – Australia.

BALAY, J., GOMES, C., JOUVE, P., HORNYCH, P. & PAUTE, J.-L. (1997). Mechanical Behaviour of Soils and Unbound Granular Materials, Modelling of Flexible Pavements – Recent Advances. En: Proceedings 8th International Conference on Asphalt Pavements,

Seattle, Vol. 1. pp. 823-842.

BARKSDALE, R. D. (1972). Laboratory Evaluation of Rutting in Basecoarse Materials. En: Proceedings of the 3rd International Conference on Asphalt Pavements, Vol. 1. pp. 161-174.

BONAQUIST, R. (1992). Summary of Pavement Performance Test Using the Accelerated Loading Facility, 1986 – 1990. En: Transportation Research Record, 1354, Transportation Research Board, Washington, D. C. pp. 74-85.

BOYCE, H. R. (1980). A Non-linear Model for the Elastic Behaviour of Granular Materials under Repeated Loading. En: Proceedings International Symposium on Soils under Cyclic and Transient Loading, Swansea, U.K., Vol. 1. pp. 285-294.

BROWN, S. F. (1996). Soil Mechanics in Pavement Engineering. En: The 36th Rankine Lecture of the British Geotechnical Society, Géotechnique 46, No. 3. pp. 383-426.

BROWN, S. F. & PAPPIN, J. W. (1981). Analysis of Pavements with Granular Bases. En: Transportation Research Record, 810, Transportation Research Board, Washington, D. C., p. 17-23.

BROWN, S. F. & PELL, P. S. (1967). An Experimental Investigation of the Stresses, Strains and Deflections in a Layered Pavement Structure Subjected to Dynamic Loads. En: Proc., 2nd Int. Conf. Struct. Des. of Asphalt Pavements. pp. 487-504.

BROWN, S. F. & SELIG, E. T. (1991). The Design of Pavement and Rail Track Foundations. En: Cyclic Loading of Soils, Capítulo 6. pp. 249-305.

CHAZALLON, C. (2000). An Elastoplastic Model with Kinematic Hardening for Unbound Aggregates in Roads, En: Unbound Aggregates in Road Construction – UNBAR 5, Dawson editor, Balkema, Rotterdam. pp 265-73270.

COLLINS, I. F. & BOULBIBANE, M. (2000). Geomechanical Analysis of Unbound Pavements Based on Shakedown Theory. En: Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126. pp. 50-59.

COLLOP, A. C., CEBON, D. & HARDY, M. S. A. (1995). Viscoelastic Approach to Rutting in Flexible Pavements. En: Journal of Transportation Engineering, 121 (1). p. 82-93.

COST 337. (2000). Unbound Granular Materials for Road Pavements, Final Report of the Action. Luxembourg: Office for Official Publications of the European Communities.

CUNDALL, P. A. BALL. (1978). A Program to Model Granular Media Using the Distinc Element Method. Technical Note, Advanced Technology Group, Dames & Moore, London.

CUNDALL, P. A. & STRACK, O. D. L. (1979). A Discrete Numerical Model for Granular Assemblies. En: Géotechnique, 29 (1). pp. 47-65.

DAWSON, A. R. (1990). Introduction to Soils and Granular Materials. Lecture Notes from Residential Course, Bituminous Pavements - Materials, Design and Evaluation, Department of Civil Engineering, University of Nottingham.

ELLIOTT, R. P. & DAVID, L. (1989). Improved Characterization Model for Granular Bases. En: Transportation Research Record, 1227, Transportation Research Board, Washington, D. C. pp. 128-133.

ERLINGSSON, S. (2004). Mechanistic Pavement Design Methods – A Road to Better Understanding of Pavement Performance. En: Via Nordica 2004 – NRA’s 19th Road Congress, C8: Berekraftige vegkonstruksjonar. 8 pp.

ERLINGSSON, S. & INGASON, T. (2004). Performance of Two Thin Pavement Structures During Accelerated Pavement Testing Using a Heavy Vehicle Simulator. En: 2nd International Conferences on Accelerated Pavement Testing, University of Minnesota, 19 pp.

FESTAG, G. (2002). Experimental Investigations on Sand under Cyclic Loading. En: Constitutive and Centrifuge Modelling: Two Extremes, Ed.: Springman, Swets & Zeitlinger. pp. 269-275.

Flexible pavements. (1996). Proceedings of the European Symposium Euroflex 1993, Lisbon (Portugal). Ed. Gomes Correia. 369 pp.

GARCÍA-ROJO, R., ALONSO-MARROQUÍN, F. & HERMANN, H. J. (2005). Characterization of the Material Response in the Granular Ratcheting. En: Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, Vol. 72 (1), No. 4. pp. 041302.1-041302.12.

GARCÍA-ROJO, R. & HERMANN, H. J. (2004). Shakedown of Unbound Granular Material. Institute for Computer Applications 1, University of Stuttgart (Germany). 9 pp.

GARNICA, P. A. & GÓMEZ, L. J. (2001). Deformaciones Permanentes en Materiales Granulares para la Sección Estructural de Carreteras. Publicación Técnica No. 176, Secretaría de Comunicaciones y Transportes (SCI) - Instituto Mexicano del Transporte (IMT). Sanfandila, México. 46 pp.

GARNICA, P. A., GÓMEZ, L. J. & SESMA, M. J. (2002). Mecánica de Materiales para Pavimentos. Publicación Técnica No. 197, Secretaría de Comunicaciones y Transportes (SCI) - Instituto Mexicano del Transporte (IMT). Sanfandila, México. 234 pp.

GARNICA, P. A., PÉREZ, G. N. & GOMES, L. A. (2001). Módulo de Resiliencia en Suelos Finos y Materiales Granulares. Publicación Técnica No. 142, Secretaría de Comunicaciones y Transportes (SCI) - Instituto Mexicano del Transporte (IMT). Sanfandila, México. 58 pp.

GIDEL, G., BREYSSE, D. & DENIS, A. (2002). Modeling the Unbound Granular Material Long Term Behavior. En: 15th ASCE Engineering Mechanics Conference, Columbia University, New York. 10 pp.

GIDEL, G., HORNYCH, P., CHAUVIN, J., BREYSSE, D. & DENIS, A. (2001). A New Approach for Investigating the Permanent Deformation Behavior of Unbound Granular Material Using the Repeated Load Triaxial Apparatus. En: Bulletin Des LaboratoiresDes

Ponts et Chaussées. pp. 5-21.

GOMES CORREIA, A. (2000). Modelling Unbound Granular Materials. En: Recommendations for Pavement Design. Technical University of Lisbon – IST.

HABIBALLAH, T. & CHAZALLON, C. (2005). An Elastoplastic Model Based on the Shakedown Concept for Flexible Pavements Unbound Granular Materials. En: Int. J. Numer. Anal. Meth. Geomech., 29. pp. 577–596.

HABIBALLAH, T., CHAZALLON, C. & HORNYCH, P. (2004). Simplified Model Based on the Shakedown Theory for Flexible Pavements. En: Proc., of the 6th International Symposium on Pavements Unbound. pp. 191-198.

HAU, K. W., MCDOWELL, G. R., ZHANG, G. P. & BROWN, S. F. (2005). The Application of a Three-Surface Kinematic Hardening Model to Repeated Loading of Thinly Surfaced Pavements. En: Granula Matter, 7. pp. 145-156.

HEUKELOM, W. & KLOMP, A. J. G. (1962). Dynamic Testing as a Means of Controlling Pavements During and After Construction. En: Proc., of 1st International Conference on Structural Design of Asphalt Pavements.

HICHER, P.-Y & CHANG, C. S. (2006). Anisotropic Nonlinear Elastic Model for Particulate Materials. En: Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 8. pp. 1052-1061.

HICHER, P., DAOUADJI, A. & FEDGHOUCHE, D. (1999). Elastoplastic Modelling of the Cyclic Behaviour of Granular Materials. En: Unbound Granular Materials – Laboratory testing, In-situ testing and modelling, Gomes Correia, A. (Ed.), A.A. Balkema, Rotterdam. pp. 161-168.

HICKS, R. G., & MONISMITH, C. L. (1971). Factors Influencing the Resilient Properties of Granular Materials. En: Hwy. Res. Rec. 345. pp. 15–31.

HMSO. (1994). Design Manual for Roads and Bridges, Vol. 7, HD 25/94, part 2, Foundations.

HOFF, I. & NORDAL, R. S. (1999). Constitutive Model for Unbound Granular Materials Based in Hyperelasticity. En: Unbound Granular Materials – Laboratory Testing, In-situ Testing and Modelling, Gomes Correia editor, Balkema, Rotterdam. pp. 187-196.

HORNYCH, P., KAZAI, A. & PIAU, J.-M. (1998). Study of the Resilient Behaviour of Unbound Granular Materials. En: Proc. BCRA’98, Trondheim, Nordal & Refsdal editor’s, Vol. 3. pp. 1277-1287.

HUDSON, S. W. & SEEDS, S. B. (1988). Evaluation of Increased Pavement Loading and Tire Pressures. En: Transportation Research Record, 1207, Transportation Research Board, Washington, D. C. pp. 197-206.

IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia. (2001). Primera Comunicación Nacional ante la Convención Marco de las Naciones Unidas sobre el Cambio Climático. Bogotá D.C.

IDU - Instituto de Desarrollo Urbano & Universidad de Los Andes. (2002). Manual de Diseño de Pavimentos para Bogotá. Bogotá D.C., Colombia.

INGASON, T., WIMAN, L. G. & HARALDSSON, H. (2002). HVS – Testing of Iceland Low Volume Road Structures. En: ISAP – 9th International Conference on Design of Asphalt Pavements. 13 pp.

INVIAS - Instituto Nacional de Vías. (2002). Manual de Diseño de Pavimentos Asfálticos en vías con Bajos, Medios y Altos volúmenes de Tránsito. Bogotá D.C., Colombia.

INVIAS - Instituto Nacional de Vías. (2002a). Normas de Ensayos de Materiales para Carreteras. Bogotá D.C., Colombia.

JOUVE, P. & GUEZOULI, S. (1996). Evolution and Recommendations for Finite Element Programs. En: Flexible Pavement. Ed. Gomes Correia, Balkema, Rotterdam. pp. 165-169.

KANDHAL, P. S. & CROSS, S. A. (1992). A National Study of Rutting in Hot Mix Asphalt (HMA) Pavements. En: NCAT Report 93 – 1, National Center of Asphalt Technology. 46 pp.

KATZENBACH, R. & FESTAG, G. (2004). Material Behaviour of Dry Sand under Cyclic Loading. En: Cyclic Behaviour of Soils and Liquefaction Phenomena, Proc. of CBS04, Bochum. pp. 153-158.

KHEDR, S. (1985). Deformation Characteristics of Granular Base Course in Flexible Pavements. En: Transportation Research Record, 1043, Transportation Research Board, Washington, D. C. pp. 131-138.

KHOGALI, W. E. I. & ZEGHAL, M. (2003). A Comprehensive System for Characterising Granular Materials: Providing Material Input for Pavement Design. En: Annual Conference of the Transportation Association of Canada. pp12.

KHOGALI, W. E. I. & ZEGHAL, M. (2000). On the Resilient Behaviour of Unbound Aggregates. En: Unbound Aggregates in Road Construction, Nottingham, England. pp. 29-34.

KIM, O.-K. & BELL, C. A. (1988). Measurement and Analysis of Truck Tire Pressures in Oregon. En: Transportation Research Record, 1207, Transportation Research Board, Washington D. C. pp. 100-110.

KIM, SUNG-HEE; LITTLE, DALLAS N. & MASAD, EYAD. (2005). Simple Methods to Estimate Inherent and Stress-Induced Anisotropy of Aggregate Base. En: Transportation Research Record, 1913, Transportation Research Board, Washington D. C. pp. 24-31.

KUMAR, P., CHANDRA, S. & VISHAL, R. Comparative Study of Different Subbase Materials. Journal of Materials in Civil Engineering, Vol. 18, No. 4, p. 576-580, 2006.

LASHINE, A. K., BROWN, S. F. & PELL, P. S. (1971). Dynamic Properties of Soils. Department of Civil Engineering, University of Nottingham (England).

LEKARP, F., ULF, I. & DAWSON, A. R. (2000). State of the art. I: Resilient Response of Unbound Aggregates. En: Journal of Transportation Engineering. 126:1. pp. 66-75.

LEKARP, F., ULF, I. & DAWSON, A. R. (2000a). State of the art. II: Permanent Strain Response of Unbound Aggregates. En: Journal of Transportation Engineering. 126:1. pp. 76-83.

LEKARP, F., RICHARDSON, I. R. & DAWSON, A. (1996). Influences on Permanent Deformation Behavior of Unbound Granular Materials. En: Transportation Research Record, 1547, Transportation Research Board, Washington D. C. pp. 68-75.

LENTZ, R. W. & BALADI, G. Y. (1980). A Simplified Procedure to Characterize Permanent Strain in Sand Subjected to Cyclic Loading. En: International Symposium on Soils under Cyclic and Transient Loading, Swansea; Balkema Publishers; Rotterdam, the Netherlands.

LISTER, N. W. (1972). The Transient and Long Term Performance of Pavements in Relation to Temperature. En: Proc. 3rd. Int. Conf. on Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor.

LITTLE, P. H. (1993). The Design of Unsurfaced Roads Using Geosynthetics. Ph. D. Thesis, Department of Civil Engineering, University of Nottingham.

LOWERY, M. & ZEGHAL, M. (2003). Effect of Particle Stiffnesses on the Resilient Behaviour of Aggregate Materials. En: 19th Canadian Congress of Applied Mechanics – CANCAM. pp. 302-303.

MIDDLETON, D. R., ROBERTS, F. L. & CHIRA-CHAVALA, T. (1986). Measurement and Analysis of Truck Tire Pressures on Texas Highways. En: Transportation Research Record, 1070, Transportation Research Board, Washington D. C. pp. 1-8.

MINTRANSPORTE - Ministerio de Transporte, Oficina de Planeación. (2006). Diagnóstico del Sector Transporte. Bogotá D. C., Colombia.

MINTRANSPORTE - Ministerio de Transporte, Oficina de Planeación. (2004). El Transporte en Cifras. Bogotá D. C., Colombia.

MINTRANSPORTE - Ministerio de Transporte, Oficina de Planeación. (2000). Parque Automotor de Transporte de Carga en Colombia. Bogotá D. C., Colombia.

Ministerio de Transporte, Instituto Nacional de Vías – INVIAS & Centro de Investigaciones en Materiales y Obras Civiles de la Universidad de Los Andes – CIMOC. (2003).

Evaluación del Efecto del Incremento en los Pesos Brutos de los Camiones C2 y C3 en la Vida Útil de las Vías de la Red Vial Nacional de Colombia. Bogotá D. C.

McDOWELL, G. R. & HAU, K. W. (2004). The Use of a Kinematic Hardening Model for Estimating Subgrade Stiffness in Layered-elastic Analyses. En: International Journal of Pavement Engineering, Vol. 5. pp. 53-59.

MORGAN, J. R. (1966). The Response of Granular Materials to Repeated Loading. En: Proc., 3rd Conf., ARRB, 1178 – 1192.

NIEMUNIS, A. (2003). Extended Hypoplastic Models for Soils. Ph. D. thesis, Politechnika Gdánska. Habilitation, Monografía 34.

NIEMUNIS, A. & HERLE, I. (1997). Hypoplastic Model for Cohesionless Soils with Elastic Strain Range. En: Mechanics of Cohesive frictional Materials, 4(2). pp. 279-299.

NÚÑEZ, W. P., MALYSZ, R., CERATTI, J. A. & GEHLING, W. Y. Y. (2004). Shear Strength and Permanent Deformation of Unbound Aggregates Used in Brazilian Pavements. En: Proc., of the 6th International Symposium on Pavements Unbound. pp. 23-31.

PIDWERBESKY, B. D. (1996). Fundamental Behaviour of Unbound Granular Pavements Subjected to Various Loading Conditions and Accelerated Trafficking. Ph. D. Thesis, University of Canterbury, Christchurch, New Zealand.

POTTS, C. F., RUTH, B. E. & SMITH, L. L. (1980). Performance of Sand-Asphalt and Limerock Pavements in Florida. En: Transportation Research Record, 741, Transportation

Research Board, Washington D. C. pp. 22-34.

RADA, C. & WITCZAK, W. M. (1981). Comprehensive Evaluation of Laboratory Resilient Moduli Results for Granular Materials. En: Transportation Research Record, 810, Transportation Research Board, Washington D. C. pp. 23-33.

REYES LIZCANO, F. A. (2003). Diseño Racional de Pavimentos. Pontificia Universidad Javeriana y Escuela Colombiana de Ingeniería, 1a edición, Bogotá D. C.

ROBERTS, F. L. & ROSSON B. T. (1985). Effects of Higher Tire Pressures on Strain in Thin AC Pavements. En: Transportation Research Record, 1043, Transportation Research Board, Washington D. C. pp. 68-77.

RONDÓN, H. A. & REYES, F. A. (2007). Comportamiento de Materiales Granulares en Pavimentos Flexibles: Estado del Conocimiento. Universidad Católica de Colombia (Grupo de Pavimentos y Materiales de Ingeniería) y Pontificia Universidad Javeriana (Grupo CECATA), Bogotá D.C., 2007.

SAUSSINE, G., CHALET C., GAUTIER, P. E., DUBOIS, F., BOHATIER, C. & MOREAU, J. J. (2004). Modelling Ballast under Cyclic Loading Using Discrete Element Methods. En: Cyclic Behaviour of Soils and Liquefaction Phenomena, Proc. of CBS04, Bochum. pp. 649 – 658.

SAWANGSURIYA, A. & Edil, T. B. Evaluating Stiffness and Strength of Pavement Materials. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering 158, Issue GE4, p. 217-230, 2005.

SHELL International Petroleum Company. (1978). Shell Pavement Design Manual – Asphalt Pavement and Overlays for Road Traffic, London.

SWEERE, G. T. (1990). Unbound granular bases for roads. Ph. D. Thesis, University of Delft. Netherlands.

TACIROGLU, E. & HJELMSTAD, K. D. (2002). Simple Nonlinear Model for Elastic Response of Cohesionless Granular Materials. En: Journal of Engineering Mechanics, Vol. 128. pp. 969-978.

TAKEUCHI, Y., KOYANAGAWA, M., MAKI, T., NISHIZAWA, T. & ENDO, K. (2004). Fundamental Study on Permanent Deformation Analysis of Granular Base Course Material Using Elasto-Plastic Model. En: Proc., of the 6th International Symposium on Pavements Unbound. p. 69-78.

TATSUOKA, F., ISHIARA, M., UCHIMURA, T. & GOMES CORREIA, A. (1999). Nonlinear Resilient Behaviour of Unbound Granular Materials Predicted by the Cross-Anisotropic Hypo-Quasi-Elasticity Model. En: Unbound Granular Materials – Laboratory testing, In-situ testing and modelling, Gomes Correia editor, Balkema, Rotterdam. pp.197-206.

TRL – Transport Research Laboratory. (1993). A Guide to the Structural Design of Bitumen-Surfaced Roads in Tropical and Sub-tropical Countries. En: RN31, Draft 4th edition.

ULLIDTZ, P. (2002). Analytical Tools for Design of Flexible Pavements. En: Proceedings of the 9th International Conference on Asphalt Pavements, International Society for Asphalt Pavements, Denmark.

UZAN, J. (1999). Granular Material Characterization for Mechanistic Pavement Design. En: Journal of Transportation Engineering, Vol. 125. pp. 108-113.

VOS E., HENDRIKS N., GALJAARD, P. J. & VAN SCHELT, W. (1996). The Non-linear Elastic Model of Boyce: An Evaluation of the Model in the FEM – Program DIANA. En: Flexible Pavement. Ed. Gomes Correia, Balkema, Rotterdam. pp. 201-207.

WERKMEISTER, S. (2003). Permanent Deformation Behaviour of Unbound Granular Materials in Pavement Constructions. Ph. D., thesis, University of Technology, Dresden.

WERKMEISTER, S., DAWSON, A. & WELLNER, F. (2001). Permanent Deformation Behaviour of Granular Materials and the Shakedown Concept. En: Transportation Research Record, 1757, Transportation Research Board, Washington D. C. pp. 75-81.

WERKMEISTER S., DAWSON, A. & WELLNER, F. (2004). Pavement Design Model of Unbound Granular Materials. En: Journal of Transportation Engineering, Vol. 130. pp. 665-674.

WERKMEISTER, S., NUMRICH, R., DAWSON, A. & WELLNER, F. (2002). Deformation Behaviour of Granular Materials under Repeated Dynamic Load. En: Journal of Environmental Geomechanics – Monte Veritá.

WICHTMANN, T. (2005). Explicit Accumulation Model for Non-cohesive Soils under Cyclic Loading. Ph. D. Thesis, Des Institutes für Grundbau und Bodenmechanik der Ruhr - Universität Bochum.

WOLFF, H. & VISSER, A. T. (1994). Incorporating Elasto - Plasticity Granular Layers Pavement Design. En: Proc. Instn. Civil Engineering Transportation, 105. pp. 259-272.

WOOJIN, L., BOHRA, N. C., ALTSCHAEFFL, A. G. & WHITE T. D. (1997). Resilient Modulus of Cohesive Soils. En: Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 2. pp. 131-136.

ZAMAN, M., CHEN, D. & LAGUROS, J. (1994). Resilient Moduli of Granular Materials. En: Journal of Transportation Engineering, Vol. 120, No. 6. pp. 967-988.

ZEGHAL, M. (2000). A Discrete Element Study of the Resilient Behavior of Granular Materials. En: 14th ASCE Engineering Mechanics Conference, Austin – Texas. 5 pp.

ZEGHAL, M. (2004). Discrete-Element Method Investigation of the Resilient Behavior of Granular Materials. En: Journal of Transportation Engineering. Vol. 130. pp. 503-509.

ZEGHAL, M. (2003). Effect of Compaction on the Resilient Behaviour of Granular Materials: an Analytical Study. En: 16th ASCE Engineering Mechanical Conference, University of Washington, Seattle. 3 pp.

Cómo citar
Rondón Quintana, H. A., & Reyes Lizcano, F. A. (2007). Metodologías de diseño de pavimentos flexibles: Tendencias, alcances y limitaciones. Ciencia E Ingeniería Neogranadina, 17(2), 41-65. https://doi.org/10.18359/rcin.1074
Publicado
2007-12-01
Sección
Artículos
Crossref Cited-by logo

Artículos más leídos del mismo autor/a