Desarrollo de fármacos antihelmínticos: actualización de candidatos a fármacos y dianas terapéuticas en el manejo de las geohelmintiasis

  • Ana M. Uribe Herrera Universidad Nacional de Colombia
  • Angela P. Rojas Universidad Nacional de Colombia.
  • Patricia Reyes Harker Universidad Nacional de Colombia
  • Martha L. Rodríguez López Universidad Nacional de Colombia
Palabras clave: antihelmínticos, uncinaria, tricuriasis, ascariasis, dianas farmacológicas

Resumen

Se estima que 1500 millones de personas en el mundo están infectadas por algún geohelminto. La disminución de la eficacia de los medicamentos antihelmínticos utilizados en la estrategia de quimioterapia preventiva, reportada particularmente para la especie Trichuris trichiura, motiva la búsqueda de otros antihelmínticos para enfrentar esta situación y evitar la posible resistencia ante este grupo de fármacos. Objetivos: esta revisión se centra en conocer el estado actual de la investigación en dianas terapéuticas y candidatos a fármacos antihelmínticos reportados en la literatura desde 2013 hasta 2021. Resultados: se recopiló la información de 28 trabajos de investigación que comprenden desarrollos desde la fase in silico hasta la fase de investigación clínica. La mayoría de los trabajos corresponde a desarrollos en las ciencias ómicas; desde la corrección en anotaciones de genomas hasta la identificación de familias proteicas fundamentales para los mecanismos de patogenicidad. Conclusión: la información referente a dianas y candidatos a fármacos, disponible en esta revisión, es una aproximación para seguir explorando las posibles aplicaciones y el desarrollo experimental de estos fármacos para el control de las geohelmintiasis.

Biografía del autor/a

Ana M. Uribe Herrera, Universidad Nacional de Colombia

Química farmacéutica. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Farmacia. Bogotá, D.C.,Colombia.

Angela P. Rojas, Universidad Nacional de Colombia.

Dr. Sc. Ciencias Química. Grupo de investigación: Biología celular de enfermedades parasitarias, autoinmunes e inflamatorias.Universidad Nacional de Colombia.

Patricia Reyes Harker, Universidad Nacional de Colombia

Mg. Medicina tropical. Departamento de Salud Pública. Facultad de Medicina. Universidad Nacional de Colombia. Bogotá, D.C., Colombia.

Martha L. Rodríguez López, Universidad Nacional de Colombia

Mg. Epidemiología clínica. Facultad de Medicina. Universidad Nacional de Colombia. Bogotá, D.C. Grupo de Investigación: Biología celular y autoinmunidad. Semillero de Investigación: Biología Celular de enfermedades parasitarias, autoinmunes e inflamatorias.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ana M. Uribe Herrera, Universidad Nacional de Colombia

Química farmacéutica. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Farmacia. Bogotá, D.C.,Colombia.

Angela P. Rojas, Universidad Nacional de Colombia.

Dr. Sc. Ciencias Química. Grupo de investigación: Biología celular de enfermedades parasitarias, autoinmunes e inflamatorias.Universidad Nacional de Colombia.

Patricia Reyes Harker, Universidad Nacional de Colombia

Mg. Medicina tropical. Departamento de Salud Pública. Facultad de Medicina. Universidad Nacional de Colombia. Bogotá, D.C., Colombia.

Martha L. Rodríguez López, Universidad Nacional de Colombia

Mg. Epidemiología clínica. Facultad de Medicina. Universidad Nacional de Colombia. Bogotá, D.C. Grupo de Investigación: Biología celular y autoinmunidad. Semillero de Investigación: Biología Celular de enfermedades parasitarias, autoinmunes e inflamatorias.

Referencias bibliográficas

Helmintiasis transmitidas por el suelo [Internet]. Disponible en: https://www.who.int/es/news-room/factsheets/detail/soil-transmitted-helminth-infections

Mutombo PN, et al. Diagnosis and Drug Resistance of Human Soil-Transmitted Helminth Infections:A Public Health Perspective. Adv Parasitol. [Internet].2019 Ene 1;104:247-326. https://doi.org/10.1016/bs.apar.2019.02.004

Geerts S, Gryseels B. Anthelmintic Resistance in Human Helminths: A Review. Trop Med Int Health [Internet]. 2001 Nov 1;6(11):915-21. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-3156.2001.00774.x

Moreno Y, Geary TG, Tritten L. When Secretomes Meet Anthelmintics: Lessons for Therapeutic Interventions.Trends in Parasitology [Internet] 2021 Feb 6;37(6):468-475. https://doi.org/10.1016/j.pt.2021.01.007

Centro colaborador de la Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT). Argentina. Vademécum de la A a la Z. [Internet]. 2013. Disponible en: https://www.iqb.es/cbasicas/farma/farma04/p028.htm

OPS/OMS | Organización Panamericana de la Salud.Evaluación de la eficacia de los medicamentos antihelmínticos contra la esquistosomiasis y las geohelmintiasis [Internet]. 2018. Disponible en: https://www.paho.org/es/documentos/evaluacion-eficacia-medicamentos-antihelminticos-contra-esquistosomiasis-geohelmintiasis

World Health Organization. Assessing the Efficacy of Anthelminthic Drugs against Schistosomiasis and Soil-Transmitted Helminthiases; 2013. Disponible en: https://apps.who.int/iris/handle/10665/79019

Dr A. Montresor. Ninth Meeting of the Working Group on Monitoring of Neglected Tropical Diseases Drug Efficacy [Internet]. 2020 dic. Disponible en: https://www.who.int/publications/i/item/9789240014084

Moser W, Schindler C, et al. Efficacy of Recommended Drugs Against Soil Transmitted Helminths: Systematic Review and Network Meta-Analysis. BMJ [Internet]. 2017 Sep 25;358:j4307. http://dx.doi.org/10.1136/bmj.j4307

Vlaminck J, et al. Piloting a Surveillance System to Monitor the Global Patterns of Drug Efficacy and the Emergence of Anthelmintic Resistance in Soil-Transmitted Helminth Control Programs: A Starworms Study Protocol [version 1; peer review: 1 approved]. Gates Open Res [Internet]. 2020 Mar 10;4:28. https://doi.org/10.12688/gatesopenres.13115.111.

Kotze AC, Prichard RK. Anthelmintic Resistance in Haemonchus Contortus: History, Mechanisms and Diagnosis. [Internet]. 2016;93:397-428. http://dx.doi.org/10.1016/bs.apar.2016.02.012

Torres Vásquez P, Prada GA, Márquez Lara D.Resistencia antihelmíntica en los nemátodos gastrointestinales del bovino.Rev Med Vet [Internet]. 2007 Ene-jun;(13):59-76. Disponible en: https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1116&context=mv

Chandran D, Bergmann FT, Sauro HM. Computer-aided Design of Biological Circuits using Tinkercell.Bioengineering Bugs [Internet]. 2010;1(4):276-283.https://doi.org/10.4161/bbug.1.4.12506

HELP Helminth Elimination Platform. Collaboration for innovation: Establishment of a pan-nematode drug development platform. [Internet]. Disponible en: https://eliminateworms.org/about-us/

Roy H, Nandi S. In-Silico Modeling in Drug Metabolism and Interaction: Current Strategies of Lead Discovery. Curr Pharm Des [Internet]. 2019 Sep 4;25(31):3292-305. https://doi.org/10.2174/1381612825666190903155935

Saldívar-González F, Prieto-Martínez FD, Medina-Franco JL. Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educ Química.[Internet]. 2017 Mar 14;28(1):51-8. https://doi.org/10.1016/j.eq.2016.06.002

Nguyen JB, et al. Peroxiredoxin-1 from the Human Hookworm Ancylostoma Ceylanicum forms a Stable Oxidized Decamer and is Covalently Inhibited by Conoidin a. Chem Biol [Internet]. 2013 Ago 22;20(8):991-1001.https://doi.org/10.1016/j.chembiol.2013.06.011

Kelleher A, Zhan B, Asojo OA. Structure of Monomeric Na-GST-3, a Glutathione S-Transferase from the Major Human Hookworm Parasite Necator americanus. Acta Crystallogr Sect F Struct Biol Cryst Commun [Internet]. 2013 Ago 1;69(Pt 8):839-43.https://doi.org/10.1107/S1744309113017661

Asojo OA, et al. X-ray Structures of Na-GST-1 and Na-GST-2 two Glutathione s-Transferase from the Human Hookworm Necator Americanus. BMC Struct Biol [Internet].2007 Jun 26;7:42. https://doi.org/10.1186/1472-6807-7-42

Hotez PJ, et al. The Human Hookworm Vaccine. [Internet].2013 Abr 18;31(Suppl 2):B227-B232. https://doi.org/10.1016/j.vaccine.2012.11.034

Kulkarni AP, Mittal SPK. Sequence Data Mining in Search of Hookworm (Necator americanus) MicroRNAs.Gene [Internet]. 2016 Sep 30;590(2):317-23.https://doi.org/10.1016/j.gene.2016.05.039

Kaji MD, Geary TG, Beech RN. A Functional Comparison of Homopentameric Nicotinic Acetylcholine Receptors (ACR-16) Receptors From Necator americanus and Ancylostoma ceylanicum. Front Mol Neurosci [Internet].2020 Nov 26;13:601102.https://doi.org/10.3389/fnmol.2020.601102

Zolfaghari Emameh R, et al. Ascaris Lumbricoides β Carbonic Anhydrase: A Potential Target Enzyme for Treatment of Ascariasis. Parasites and Vectors [Internet]. 2015 Sep 18;8(1). https://doi.org/10.1186/s13071-015-1098-5

Yadav M. Homology Modeling and Molecular Dynamics Simulation Study of β Carbonic Anhydrase of Ascaris Lumbricoides.Bioinformation [Internet]. 2019 Ago 31;15(8):572-8. https://doi.org/10.6026/97320630015572

McVeigh P. Post-genomic Progress in Helminth Parasitology.Parasitology [Internet]. 2020 Jul 1;147(8):835-840. https://doi.org/10.1017/S0031182020000591

Cantacessi C, et al. TIMPs of Parasitic Helminths - A Large-Scale Analysis of High-throughput Sequence Datasets. Parasites and Vectors [Internet]. 2013 May 30;6(1). https://doi.org/10.1186/1756-3305-6-156

Taylor CM, et al. Discovery of Anthelmintic Drug Targets and Drugs Using Chokepoints in Nematode Metabolic Pathways. PLoS Pathog [Internet]. 2013 Ago;9(8):e1003505. https://doi.org/10.1371/journal.ppat.1003505

Tang YT, et al. Genome of the Human Hookworm Necator americanus. Nat Genet [Internet]. 2014 Ene 19;46(3):261-9. https://doi.org/10.1038/ng.2875

Logan J, et al. Comprehensive Analysis of the Secreted Proteome of Adult Necator Americanus Hookworms.PLoS Negl Trop Dis [Internet]. 2020 May 26;14(5):1-30.https://doi.org/10.1371/journal.pntd.0008237

Centers for Disease Control and Prevention.Hookworm (Intestinal). [Internet]. Disponible en:https://www.cdc.gov/dpdx/hookworm/

Schwarz EM, et al. The Genome and Transcriptome of the Zoonotic Hookworm Ancylostoma ceylanicum Identify Infection-Specific Gene Families. Nat Genet [Internet]. 2015 Abr 28;47(4):416-22. https://doi.org/10.1038/ng.3237

Gao X, et al. Two Potential Hookworm DAF-16 Target Genes, SNR-3, and LPP-1: Gene Structure, Expression Profile, and Implications of a Cis-Regulatory Element in the Regulation of Gene Expression. Parasites and Vectors [Internet]. 2015 Ene 8;8(1). https://doi.org/10.1186/s13071-014-0609-0

Huang Y, et al. Identification and Localization of Hookworm Platelet Inhibitor in Ancylostoma ceylanicum.Infect Genet Evol [Internet]. 2020 Ene 1;77.https://doi.org/10.1016/j.meegid.2019.104102

Centers for Disease Control and Prevention. Ascariasis [Internet]. 2021. Disponible en: https://www.cdc.gov/parasites/ascariasis/index.html

Rosa BA, et al. Functional and Phylogenetic Characterization of Proteins Detected in Various Nematode Intestinal Compartments. Mol Cell Proteomics [Internet].2015 Abr 1;14(4):812-27. https://doi.org/10.1074/mcp.M114.046227

Wang Q, et al. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets with Broad Potential. EBioMedicine [Internet]. 2015 Sep 1;2(9):1079-89. https://doi.org/10.1016/j.ebiom.2015.07.030

Hurst RJM, et al. An Antagonist of the Retinoid X Receptor Reduces the Viability of Trichuris muris in vitro.BMC Infect Dis [Internet]. 2014 Sep 27;14(1). https://doi.org/10.1186/1471-2334-14-520

Williams AR, et al. Anthelmintic Activity of Trans-Cinnamaldehyde and A-and B-Type Proanthocyanidins derived from Cinnamon (Cinnamomu verum). Sci Rep [Internet]. 2015 Sep 30;5. https://doi.org/10.1038/srep14791

Abongwa M, et al. Pharmacological Profile of Ascaris suum ACR-16, a new Homomeric Nicotinic Acetylcholine Receptor Widely Distributed in Ascaris tissues. Br J Pharmacol [Internet]. 2016 May 30;173(16):2463-77.https://doi.org/10.1111/bph.13524

Zheng F, et al. (S)-5-ethynyl-anabasine, a Novel Compound,is a more Potent Agonist than other Nicotine Alkaloids on the Nematode Asu-ACR-16 Receptor.Int J Parasitol Drugs Drug Resist [Internet]. 2017 Abr 1;7(1):12-22. Disponible en:https://pubmed.ncbi.nlm.nih.gov/28033523/

Choudhary S, et al. Pharmacological Characterization of a Homomeric Nicotinic Acetylcholine Receptor formed by Ancylostoma caninum ACR-16. Invertebr Neurosci [Internet]. 2019 Sep 5;19(4):11. https://doi.org/10.1007/s10158-019-0231-0

Abriola L, et al. Development and Optimization of a High-Throughput Screening Method utilizing Ancylostoma ceylanicum Egg Hatching to Identify Novel Anthelmintics. PLoS One [Internet]. 2019 Jun 3;14(6):e0217019. https://doi.org/10.1371/journal.pone.

Le TG, et al. Novel 1-Methyl-1 H-pyrazole-5-carboxamide Derivatives with Potent Anthelmintic Activity. J Med Chem [Internet]. 2019 Abr 11;62(7):3367-80. Disponible en: https://pubmed.ncbi.nlm.nih.gov/30875218/

Kulke D, et al.Efficacy of Cyclooctadepsipeptides and Aminophenylamidines against Larval, Immature and Mature Adult Stages of a Parasitologically Characterized Trichurosis Model in Mice. PLoS Negl Trop Dis [Internet]. 2014;8(2). Disponible en: https://www.pubmed.ncbi.nlm.nih.gov/24587460/

Partridge FA, et al. Dihydrobenz[e] [1,4] oxazepin-2(3H)-ones, a new Anthelmintic Chemotype Immobilising Whipworm and Reducing Infectivity In Vivo. PLoS Negl Trop Dis [Internet]. 2017 Feb 9;11(2):e0005359. https://doi.org/10.1371/journal.pntd.0005359

Vermeire JJ, Suzuki BM, Caffrey CR. Odanacatib,a Cathepsin K Cysteine Protease Inhibitor, KillHookwor InVivo.Pharmaceuticals [Internet]. 2016 Jul 4;9(3):39. https://doi.org/10.3390/ph9030039

Bouchery T, et al. A Novel Blood-Feeding Detoxification Pathway in Nippostrongylus brasiliensis L3 Reveals a Potential Checkpoint for Arresting Hookworm Development. PLoS Pathog [Internet].2018 Mar 22;14(3):e1006931.https://doi.org/10.1371/journal.ppat.1006931

Tyagi R, et al. Identification of Small Molecule Enzyme Inhibitors as Broad-Spectrum Anthelmintics. Sci Re [Internet]. 2019 Jun 24;9(1). https://doi.org/10.1038/s41598-019-45548-7

Elfawal MA, Savinov SN, Aroian RV. Drug Screening for Discovery of Broad-spectrum Agents for Soiltransmitted Nematodes. Sci Rep [Internet]. 2019 Ago 26;9(1). https://doi.org/10.1038/s41598-019-48720-1

Hofmann D, et al. Efficacy and Safety of Ascending Doses of Moxidectin Against Strongyloides stercorali Infections in Adults: A Randomised, Parallel-Group, Single-Blinded, Placebo-Controlled, Dose-Ranging, Phase 2a Trial.Lancet Infect Dis [Internet]. 2021Mar 30;21(8):1151-60. https://doi.org/10.1016/S1473-3099(20)30691-5

Cómo citar
Uribe Herrera, A. M., Rojas, A. P., Reyes Harker, P., & Rodríguez López, M. L. (2023). Desarrollo de fármacos antihelmínticos: actualización de candidatos a fármacos y dianas terapéuticas en el manejo de las geohelmintiasis. Revista Med, 30(2), 9–22. https://doi.org/10.18359/rmed.6465
Publicado
2023-11-10
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code