Material optimization, reverse engineering and rapid prototyping of a handmade shaver

Palabras clave: Additive Manufacturing, Industrial Design, Reverse Engineering

Resumen

This study investigates the optimization of materials for a hand-crafted razor using innovative additive manufacturing techniques. It reviews previous patent designs to avoid replicating existing ones. Subsequently, a preliminary razor drawing was created based on hand biomechanics to determine compatible hand grips. This process culminated in a functional prototype, digitally rendered using a FARO Edge E09-05-17-32364 scanner supported by point cloud data. Various Computer Aided Design (CAD) software’s were utilized to generate a digital model saved in an STL file format. Employing Fused Deposition Modeling (FDM) with ABS and PLA, alongside Stereo-lithography/Digital Light Processing (SLA/DLP) with resin technologies, the final prototype was produced, achieving a 45% material optimization in the handle. Additionally, gripping system for the razor blade was designed at the shaver’s tip, ensuring secure closure a satisfactory performance.

Biografía del autor/a

Francisco Javier Echeverria Tamayo, Pontificia Universidad Católica del Ecuador

Máster Universitario en Ingeniería en Diseño Industrial. Pontificia Universidad Católica del Ecuador – Sede Ambato. Ambato, Ecuador

Pablo Israel Amancha Proaño, Pontificia Universidad Católica del Ecuador

Master Degree in Design and Management of Technological Projects. International University of la Rioja. Spain. Master’s Degree in Energy Engineering. Pontificia Universidad Católica de Chile, Santiago, Chile. Mechanic Engineer. Higher Polytechnic of Chimborazo. Ecuador. Pontificia Universidad Católica del Ecuador,Quito, Ecuador.

María Soledad Miranda Salazar, Pontificia Universidad Católica del Ecuador

Master Degree in Design and Management of Technological Projects. International University of la Rioja. Spain. Master’s Degree in Energy Engineering. Pontificia Universidad Católica de Chile, Santiago, Chile. Mechanic Engineer. Higher Polytechnic of Chimborazo. Ecuador. Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Francisco Javier Echeverria Tamayo, Pontificia Universidad Católica del Ecuador

Máster Universitario en Ingeniería en Diseño Industrial. Pontificia Universidad Católica del Ecuador – Sede Ambato. Ambato, Ecuador

Pablo Israel Amancha Proaño, Pontificia Universidad Católica del Ecuador

Master Degree in Design and Management of Technological Projects. International University of la Rioja. Spain. Master’s Degree in Energy Engineering. Pontificia Universidad Católica de Chile, Santiago, Chile. Mechanic Engineer. Higher Polytechnic of Chimborazo. Ecuador. Pontificia Universidad Católica del Ecuador,Quito, Ecuador.

María Soledad Miranda Salazar, Pontificia Universidad Católica del Ecuador

Master Degree in Design and Management of Technological Projects. International University of la Rioja. Spain. Master’s Degree in Energy Engineering. Pontificia Universidad Católica de Chile, Santiago, Chile. Mechanic Engineer. Higher Polytechnic of Chimborazo. Ecuador. Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Referencias bibliográficas

Jankovics D, Barari A. Customization of Automotive Structural Components using Additive Manufacturing and Topology Optimization. IFAC-PapersOnLine 2019;52:212–7. https://doi.org/10.1016/J.IFACOL.2019.10.066

Sigmund O, Maute K. Topology optimization approaches: A comparative review. Structural and Multidisciplinary Optimization 2013;48:1031–55. https://doi.org/10.1007/S00158-013-0978-6/FIGURES/2

Kollmann HT, Abueidda DW, Koric S, Guleryuz E, Sobh NA. Deep learning for topology optimization of 2D metamaterials. Mater Des 2020;196:109098. https://doi.org/10.1016/J.MATDES.2020.109098

Javaid M, Haleem A, Singh RP, Suman R, Rab S. Role of additive manufacturing applications towards environmental sustainability. Advanced Industrial and Engineering Polymer Research 2021;4:312–22. https://doi.org/10.1016/J.AIEPR.2021.07.005

Koester L, Taheri H, Bond LJ, Barnard D, Gray J. Additive manufacturing metrology: State of the art and needs assessment. AIP Conf Proc 2016;1706:130001. https://doi.org/10.1063/1.4940604

Manfredi D, Calignano F, Krishnan M, Canali R, Ambrosio EP, Biamino S, et al. Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs). Light Metal Alloys Applications 2014. https://doi.org/10.5772/58534

Tian X, Wu L, Gu D, Yuan S, Zhao Y, Li X, et al. Roadmap for Additive Manufacturing: Toward Intellectualization and Industrialization. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers 2022;1:100014. https://doi.org/10.1016/J.CJMEAM.2022.100014.

Zhu J, Zhou H, Wang C, Zhou L, Yuan S, Zhang W. A review of topology optimization for additive manufacturing: Status and challenges. Chinese Journal of Aeronautics 2021;34:91–110. https://doi.org/10.1016/j.cja.2020.09.020

Zhu JH, Zhang WH, Xia L. Topology Optimization in Aircraft and Aerospace Structures Design. Archives of Computational Methods in Engineering 2015 23:4 2015;23:595–622. https://doi.org/10.1007/S11831-015-9151-2

Daminabo SC, Goel S, Grammatikos SA, Nezhad HY, Thakur VK. Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. Mater Today Chem 2020;16:100248. https://doi.org/10.1016/J.MTCHEM.2020.100248

Karayel E, Bozkurt Y. Additive manufacturing method and different welding applications. Journal of Materials Research and Technology 2020;9:11424–38. https://doi.org/10.1016/J.JMRT.2020.08.039

Torres JC, Cano P, Melero J, España M, Moreno J. Aplicaciones de la digitalización 3D del patrimonio. Virtual Archaeology Review 2010;1:51–4. https://doi.org/10.4995/VAR.2010.4768

Pressman RS. Ingeniería de Software (Spanish Edition) 2010:808.

Díaz M, De Moya F. El análisis de patentes como estrategia para la toma de decisiones innovadoras. Profesional De La Información 2008:293–308. https://doi.org/https://doi.org/10.3145/epi.2008.may.05

Briede JC, Cabello M, Hernandis B. Modelo de abocetado concurrente para el diseño conceptual de productos industriales. Dyna (Medellin) 2014;81:199–208. https://doi.org/10.15446/DYNA.V81N186.41068

Cómo citar
Echeverria Tamayo, F. J., Amancha Proaño, P. I., & Miranda Salazar, M. S. (2024). Material optimization, reverse engineering and rapid prototyping of a handmade shaver. Revista Facultad De Ciencias Básicas, 18(2), 29–40. https://doi.org/10.18359/rfcb.7026
Publicado
2024-05-30
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code

Algunos artículos similares: