Átomos individuales

Un reto para la química verde

Palabras clave: Química verde, Desarrollo sostenible, Economía del átomo, Átomo individual, Catálisis, Adátomos

Resumen

La creciente demanda de diversos productos de consumo debido al aumento de la población mundial impacta directamente el ambiente. En años recientes, el estudio y desarrollo de nuevos materiales basados en átomos individuales (SA) constituyen un nuevo paradigma de la eficiencia en la química verde para enfrentar los impactos negativos de la sobreexplotación de las materias primas. En este documento se explica los conceptos claves para entender los materiales basados en SA, su síntesis, aplicaciones, así como las principales técnicas analíticas para su caracterización y su relación con la química ambiental como elemento tecnológico clave en el desarrollo sostenible.

Biografía del autor/a

Anderson Guarnizo Franco, Universidad del Tolima

PhD in Inorganic Chemistry and Master’s in Applied Materials Chemistry, Universitat de Barcelona. Che- mist, Universidad del Quindío. Professor at Universidad del Tolima, Ibagué, Colombia.

Luis Fernando Rodríguez Herrera, Universidad del Tolima

Master’s in Chemistry, Universidad del Quindío. Chemist, Universidad Nacional de Colombia. Professor at Universidad del Tolima, Ibagué, Colombia.

Ximena Carolina Pulido Villamil, Universidad del Tolima

PhD in Biomedicine, Master’s in Biomedicine and Biological Sciences, Universitat de Barcelona. Licensed Professor of Biology and Chemistry, Universidad del Tolima. Professor at Universidad del Tolima, Ibagué, Colombia.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Anderson Guarnizo Franco, Universidad del Tolima

PhD in Inorganic Chemistry and Master’s in Applied Materials Chemistry, Universitat de Barcelona. Che- mist, Universidad del Quindío. Professor at Universidad del Tolima, Ibagué, Colombia.

Luis Fernando Rodríguez Herrera, Universidad del Tolima

Master’s in Chemistry, Universidad del Quindío. Chemist, Universidad Nacional de Colombia. Professor at Universidad del Tolima, Ibagué, Colombia.

Ximena Carolina Pulido Villamil, Universidad del Tolima

PhD in Biomedicine, Master’s in Biomedicine and Biological Sciences, Universitat de Barcelona. Licensed Professor of Biology and Chemistry, Universidad del Tolima. Professor at Universidad del Tolima, Ibagué, Colombia.

Referencias Bibliográficas

Alghannam, A., Muhich, C. L., & Musgrave, C. B. (2017). Adatom surface diffusion of catalytic metals on the anatase TiO 2 (101) surface. Physical Chemistry Chemi- cal Physics, 19(6), 4541-4552. https://doi.org/10.1039/C6CP08789B

Andraos, J. (2012). Inclusion of environmental impact pa- rameters in radial pentagon material efficiency metrics analysis: Using benign indices as a step towards a com- plete assessment of "greenness" for chemical reactions and synthesis plans. Organic Process Research & De- velopment, 16(9), 1482-1506. https://doi.org/10.1021/op3001405

Bond, G. C. (1974). Homogeneous and Heterogeneous Catalysis by Noble Metals, in B. J. Luberoff (Ed.), Ho- mogeneous Catalysis (pp. 25-34). American Chemical Society. https://doi.org/10.1021/ba-1968-0070.ch002

Caparrós, F. J., Guarnizo, A., Rossell, M. D., Angurell, I., Seco, M., Muller, G., ... & Rossell, O. (2017). NH 2-or PPh 2-functionalized linkers for the immobilization of palla- dium on magnetite nanoparticles? rsc advances, 7(45), 27872-27880. https://doi.org/10.1039/C7RA03639F

Castillejos, E., García-Minguillán, A. M., Bachiller-Bae- za, B., Rodríguez-Ramos, I., & Guerrero-Ruiz, A. (2018). When the nature of surface functionalities on modified carbon dominates the dispersion of palla- dium hydrogenation catalysts. Catalysis Today, 301, 248-257. https://doi.org/10.1016/j.cattod.2017.05.024

Chang, T. Y., Tanaka, Y., Ishikawa, R., Toyoura, K., Mat- sunaga, K., Ikuhara, Y., & Shibata, N. (2014). Direct imaging of pt single atoms adsorbed on TiO2 (110) surfaces. Nano letters, 14(1), 134-138. https://doi.org/10.1021/nl403520c

Chen, Y., Huang, Z., Gu, X., Ma, Z., Chen, J., & Tang, X. (2017). Top-down synthesis strategies: Maximum noble-metal atom efficiency in catalytic materials. Chi- nese Journal of Catalysis, 38(9), 1588-1596. https://doi.org/10.1016/S1872-2067(17)62778-5

Cheng, N., Zhang, L., Doyle-Davis, K., & Sun, X. (2019). Single-atom catalysts: From design to applica- tion. Electrochemical Energy Reviews, 2(4), 1-35. https://doi.org/10.1007/s41918-019-00050-6

Corma, A., & Garcia, H. (2008). Supported gold nanoparti- cles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096-2126. https://doi.org/10.1039/b707314n

Corma, A., Concepción, P., Boronat, M., Sabater, M. J., Navas, J., Yacaman, M. J., ... & Mendoza, E. (2013). Exceptional oxidation activity with size-controlled su- pported gold clusters of low atomicity. Nature Chemis- try, 5(9), 775-781. https://doi.org/10.1038/nchem.1721

Cui, X., Junge, K., Dai, X., Kreyenschulte, C., Pohl, M. M., Wohlrab, S., ... & Beller, M. (2017). Synthesis of single atom based heterogeneous platinum catalysts: High selectivity and activity for hydrosilylation reactions. acs central science, 3(6), 580-585. https://doi.org/10.1021/acscentsci.7b00105

Deng, T., Zheng, W., & Zhang, W. (2017). Increasing the range of non-noble-metal single-atom catalysts. Chinese Journal of Catalysis, 38(9), 1489-1497. https://doi.org/10.1016/S1872-2067(17)62799-2

Dicks, A. P., & Hent, A. (2015). Atom economy and reac- tion mass efficiency. In Green Chemistry Metrics (pp. 17-44). Springer, Cham. https://doi.org/10.1007/978-3-319-10500-0_2

Dong, F., Zhao, Y., Han, W., Zhao, H., Lu, G., & Tang, Z. (2017). Co nanoparticles anchoring three dimen- sional graphene lattice as bifunctional catalyst for low-temperature CO oxidation. Molecular Catalysis, 439, 118-127. https://doi.org/10.1016/j.mcat.2017.06.022

Doyle, A. M., Shaikhutdinov, S. K., Jackson, S. D., & Fre- und, H. J. (2003). Hydrogenation on metal surfaces: Why are nanoparticles more active than single crys- tals? Angewandte chemie international edition, 42(42), 5240-5243. https://doi.org/10.1002/anie.200352124

Fei, H., Dong, J., Arellano-Jiménez, M. J., Ye, G., Kim, N. D., Samuel, E. L., ... & Yacaman, M. J. (2015). Atomic cobalt on nitrogen-doped graphene for hydrogen ge- neration. Nature communications, 6(1), 1-8. https://doi.org/10.1038/ncomms9668

Flytzani-Stephanopoulos, M. (2017). Supported metal ca- talysts at the single-atom limit-A viewpoint. Chine- se Journal of Catalysis, 38(9), 1432-1442. https://doi.org/10.1016/S1872-2067(17)62886-9

Fuechsle, M., Miwa, J. A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., ... & Simmons, M. Y. (2012). A single-atom transistor. Nature nanotechnology, 7(4), 242-246. https://doi.org/10.1038/nnano.2012.21

Gao, Z., Yang, W., Ding, X., Lv, G., & Yan, W. (2018). Su- pport effects in single atom iron catalysts on adsorp- tion characteristics of toxic gases (NO2, NH3, SO3 and H2S). Applied Surface Science, 436, 585-595. https://doi.org/10.1016/j.apsusc.2017.12.077

González-Castaño, M., Le Saché, E., Ivanova, S., Ro- mero-Sarria, F., Centeno, M. A., & Odriozola, J. A. (2018). Tailoring structured wgs catalysts: Impact of multilayered concept on the water surface interac- tions. Applied Catalysis B: Environmental, 222, 124- 132. https://doi.org/10.1016/j.apcatb.2017.10.018

Greeley, J., Nørskov, J. K., & Mavrikakis, M. (2002). Electro- nic structure and catalysis on metal surfaces. Annual review of physical chemistry, 53(1), 319-348. https://doi.org/10.1146/annurev.physchem.53.100301.131630

Guarnizo, A., Angurell, I., Muller, G., Llorca, J., Seco, M., Rossell, O., & Rossell, M. D. (2016). Highly water-dispersible magnetite-supported Pd nanoparticles and single atoms as excellent catalysts for Suzuki and hydrogenation reactions. rsc advances, 6(73), 68675-68684. https://doi.org/10.1039/C6RA14257E

Guarnizo Franco, A. (2016). Síntesis y propiedades catalíti- cas de nanopartículas de paladio depositadas sobre na- nopartículas de magnetita. Universitat de Barcelona.

Hahn, J. R., & Ho, W. (2001). Oxidation of a single carbon monoxide molecule manipulated and induced with a scanning tunneling microscope. Physical review let- ters, 87(16), 166102. https://doi.org/10.1103/PhysRevLett.87.166102

Hansen, T. W., DeLaRiva, A. T., Challa, S. R., & Datye, A. K. (2013). Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening? Accounts of chemical research, 46(8), 1720-1730. https://doi.org/10.1021/ar3002427

Haruta, M. (2003). When gold is not noble: Catalysis by nanoparticles. The chemical record, 3(2), 75-87. https://doi.org/10.1002/tcr.10053

Hedayatnasab, Z., Abnisa, F., & Daud, W. M. A. W. (2017). Review on magnetic nanoparticles for mag- netic nanofluid hyperthermia application. Materials & Design, 123, 174-196. https://doi.org/10.1016/j.matdes.2017.03.036

Hu, P., Huang, Z., Amghouz, Z., Makkee, M., Xu, F., Kap- teijn, F., ... & Tang, X. (2014). Electronic metal-support interactions in single‐atom catalysts. Angewandte Chemie, 126(13), 3486-3489. https://doi.org/10.1002/ange.201309248

Jonker, B. T. (1994). Surface adatom-adatom coordina- tion and orientation determined by low energy Auger electron and photoelectron diffraction due to adatom emission. Surface science, 306(1-2), L555-L562. https://doi.org/10.1016/0039-6028(94)91177-0

Kharissova, O. V., Dias, H. R., Kharisov, B. I., Pérez, B. O., & Pérez, V. M. J. (2013). The greener synthesis of nanoparticles. Trends in biotechnology, 31(4), 240-248. https://doi.org/10.1016/j.tibtech.2013.01.003

Kim, J., Guillaume, B., Chung, J., & Hwang, Y. (2015). Critical and precious materials consumption and requirement in wind energy system in the EU 27. Applied Energy, 139, 327-334. https://doi.org/10.1016/j.apenergy.2014.11.003

Liang, S., Hao, C., & Shi, Y. (2015). The power of single-atom catalysis. ChemCatChem, 7(17), 2559- 2567. https://doi.org/10.1002/cctc.201500363

Liu, J., Bunes, B. R., Zang, L., & Wang, C. (2018). Suppor- ted single-atom catalysts: Synthesis, characterization, properties, and applications. Environmental Chemistry Letters, 16(2), 477-505. https://doi.org/10.1007/s10311-017-0679-2

Liu, J., Jiao, M., Lu, L., Barkholtz, H. M., Li, Y., Wang, Y., ... & Ma, C. (2017). High performance platinum single atom electrocatalyst for oxygen reduction reac- tion. Nature communications, 8(1), 1-10. https://doi.org/10.1038/ncomms16160

Liu, L., & Corma, A. (2018). Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chemical reviews, 118(10), 4981-5079. https://doi.org/10.1021/acs.chemrev.7b00776

Liu, P., Xie, Y., Miller, E., Ebine, Y., Kumaravadivel, P., Sohn, S., & Cha, J. J. (2019). Dislocation-driven SnTe surface defects during chemical vapor depo- sition growth. Journal of Physics and Chemistry of Solids, 128, 351-359. https://doi.org/10.1016/j.jpcs.2017.12.016

MacLaren, J. M., Pendry, J. P., & Joyner, R. W. (1986). The role of adatom geometry in the strength and range of catalyst poisoning. Surface science, 165(2-3), L80-L84. https://doi.org/10.1016/0039-6028(86)90804-6

Märkl, J. T. (2015). Investigation of Magnetic Adatoms with Scanning Tunneling Techniques. Karlsruhe: kit Scientific Publishing.

Matrane, I., Mazroui, M. H., Sbiaai, K., Eddiai, A., & Bou- ghaleb, Y. (2017). Energy barriers of single-adatoms diffusion on unreconstructed and reconstructed (110) surfaces. The European Physical Journal B, 90(10), 201. https://doi.org/10.1140/epjb/e2017-80235-0

Nath, S., Jana, S., Pradhan, M., & Pal, T. (2010). Ligand-stabilized metal nanoparticles in organic sol- vent. Journal of colloid and interface science, 341(2), 333-352. https://doi.org/10.1016/j.jcis.2009.09.049

Natterer, F. D., Yang, K., Paul, W., Willke, P., Choi, T., Greber, T., ... & Lutz, C. P. (2017). Reading and writing single-atom magnets. Nature, 543(7644), 226-228. https://doi.org/10.1038/nature21371

Nørskov, J. K. (2001). Surface chemistry: Catalysis frozen in time. Nature, 414(6862), 405-406. https://doi.org/10.1038/35106674

Ogino, I. (2017). X-ray absorption spectroscopy for single-atom catalysts: Critical importance and persistent challenges. Chinese Journal of Catalysis, 38(9), 1481- 1488. https://doi.org/10.1016/S1872-2067(17)62880-8

O'Mullane, A. P. (2014). From single crystal surfaces to single atoms: Investigating active sites in electro- catalysis. Nanoscale, 6(8), 4012-4026. https://doi.org/10.1039/C4NR00419A

Pajonk, G. M. (2000). Contribution of spillover effects to heterogeneous catalysis. Applied Catalysis A: General, 202(2), 157-169. https://doi.org/10.1016/S0926-860X(00)00522-6

Parkinson, G. S. (2017). Unravelling single atom catalysis: The surface science approach. arXiv preprint arXiv:1706.09473. https://doi.org/10.1016/S1872-2067(17)62878-X

Parkinson, G. S., Novotny, Z., Argentero, G., Schmid, M., Pavelec, J., Kosak, R., ... & Diebold, U. (2013). Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst. Nature materials, 12(8), 724-728. https://doi.org/10.1038/nmat3667

Pfisterer, J. H., Liang, Y., Schneider, O., & Bandarenka, A. S. (2017). Direct instrumental identification of ca- talytically active surface sites. Nature, 549(7670), 74- 77. https://doi.org/10.1038/nature23661

Pla, J. J., Tan, K. Y., Dehollain, J. P., Lim, W. H., Morton, J. J., Jamieson, D. N., ... & Morello, A. (2012). A single-atom electron spin qubit in silicon. Nature, 489(7417), 541- 545 https://doi.org/10.1038/nature11449

Pyle, D. S., Gray, E. M., & Webb, C. J. (2016). Hydrogen

storage in carbon nanostructures via spillover. Inter- national Journal of Hydrogen Energy, 41(42), 19098- 19113. https://doi.org/10.1016/j.ijhydene.2016.08.061

Qiao, B., Liang, J. X., Wang, A., Xu, C. Q., Li, J., Zhang, T., & Liu, J. J. (2015). Ultrastable single-atom gold ca- talysts with strong covalent metal-support interaction (CMSI). Nano Research, 8(9), 2913-2924. https://doi.org/10.1007/s12274-015-0796-9

Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., ... & Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature chemistry, 3(8), 634- 641. https://doi.org/10.1038/nchem.1095

Risse, T., Shaikhutdinov, S., Nilius, N., Sterrer, M., & Freund, H. J. (2008). Gold supported on thin oxide films: From single atoms to nanoparticles. Accounts of chemical research, 41(8), 949-956. https://doi.org/10.1021/ar800078m

Rossell, M. D., Caparrós, F. J., Angurell, I., Muller, G., Llorca, J., Seco, M., & Rossell, O. (2016). Magnetite-supported palladium single-atoms do not catalyse the hydrogenation of alkenes but small clusters do. Catalysis Science & Technology, 6(12), 4081-4085. https://doi.org/10.1039/C6CY00596A

Santos, C. S., Gabriel, B., Blanchy, M., Menes, O., Gar- cía, D., Blanco, M., ... & Neto, V. (2015). Industrial applications of nanoparticles-A prospective over- view. Materials Today: Proceedings, 2(1), 456-465. https://doi.org/10.1016/j.matpr.2015.04.056

Schuh, T., Balashov, T., Miyamachi, T., Wu, S. Y., Kuo, C. C., Ernst, A., ... & Wulfhekel, W. (2011). Magne- tic anisotropy and magnetic excitations in supported atoms. Physical Review B, 84(10), 104401. https://doi.org/10.1103/PhysRevB.84.104401

Sengani, M., Grumezescu, A. M., & Rajeswari, V. D. (2017). Recent trends and methodologies in gold na- noparticle synthesis-A prospective review on drug delivery aspect. OpenNano, 2, 37-46. https://doi.org/10.1016/j.onano.2017.07.001

Sun, J., Han, Y., Fu, H., Qu, X., Xu, Z., & Zheng, S. (2017). Au@ Pd/TiO2 with atomically dispersed Pd as highly active catalyst for solvent-free aerobic oxidation of benzyl alcohol. Chemical Engineering Journal, 313, 1-9. https://doi.org/10.1016/j.cej.2016.12.024

Sun, S., Zhang, G., Gauquelin, N., Chen, N., Zhou, J., Yang, S., ... & Li, R. (2013). Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Scientific reports, 3(1), 1-9. https://doi. org/10.1038/srep01775

Vilé, G., Albani, D., Nachtegaal, M., Chen, Z., Dontsova, D., Antonietti, M., ... & Pérez Ramírez, J. (2015). A stable single site palladium catalyst for hydrogenations. An- gewandte Chemie International Edition, 54(38), 11265- 11269. https://doi.org/10.1002/anie.201505073

Wang, L., Huang, L., Liang, F., Liu, S., Wang, Y., & Zhang, H. (2017). Preparation, characterization and catalytic performance of single-atom catalysts. Chine- se Journal of Catalysis, 38(9), 1528-1539. https://doi.org/10.1016/S1872-2067(17)62770-0

Wei, H., Liu, X., Wang, A., Zhang, L., Qiao, B., Yang, X., ... & Zhang, T. (2014). FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature communications, 5, 5634. https://doi.org/10.1038/ncomms6634

Woodruff, D. P. (1994). Photoelectron and Auger electron diffraction. Surface science, 299, 183-198. https://doi.org/10.1016/0039-6028(94)90654-8

Wu, C. X., Wen, S. Z., Yan, L. K., Zhang, M., Ma, T. Y., Kan, Y. H., & Su, Z. M. (2017). Conductive metal adatoms adsorbed on graphene nanoribbons: A first-principles study of electronic structures, magnetization and trans- port properties. Journal of Materials Chemistry C, 5(16), 4053-4062. https://doi.org/10.1039/C6TC05545A

Yan, H., Cheng, H., Yi, H., Lin, Y., Yao, T., Wang, C., ... & Lu, J. (2015). Single-atom Pd1/graphene catalyst achie- ved by atomic layer deposition: Remarkable performan- ce in selective hydrogenation of 1,3-butadiene. Journal of the American chemical society, 137(33), 10484-10487. https://doi.org/10.1021/jacs.5b06485

Yang, X. F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-atom catalysts: A new frontier in hetero- geneous catalysis. Accounts of chemical research, 46(8), 1740-1748. https://doi.org/10.1021/ar300361m

Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F., & Eigler, D. M. (1997). Probing the local effects of magnetic impurities on superconductivity. Science, 275(5307), 1767-1770. https://doi.org/10.1126/science.275.5307.1767

Zhang, L., Ren, Y., Liu, W., Wang, A., & Zhang, T. (2018). Single-atom catalyst: A rising star for green synthe- sis of fine chemicals. National Science Review, 5(5), 653-672. https://doi.org/10.1093/nsr/nwy077

Cómo citar
Guarnizo Franco, A., Rodríguez Herrera, L. F., & Pulido Villamil, X. C. (2020). Átomos individuales: Un reto para la química verde. Revista Facultad De Ciencias Básicas, 15(2), 69-81. https://doi.org/10.18359/rfcb.4031
Publicado
2020-08-14
Sección
Artículos