Sistema de visualización y control para una planta de tratamiento de aguas residuales de laboratorio usando tratamiento biológico

Palabras clave: lodos activados, tratamiento biológico, control digital, control en tiempo real, identificación de sistemas

Resumen

El presente artículo presenta un novedoso sistema de instrumentación electrónica y control en tiempo real (SIE\andCTR) para un prototipo de planta que usa lodos activados para el tratamiento de aguas residuales. La principal contribución de la investigación realizada estuvo orientada a trabajar sobre un diseño experimental con pequeñas dimensiones y bajo costo. Este diseño incorporó dos tanques de almacenamiento de flujo continuo sobre los cuales se realizó un proceso de identificación con el Toolbox de identificación de MATLAB para conocer su modelo matemático. La representación matemática obtenida es presentada como una función de transferencia en tiempo continuo y discreto. Para evaluar el rendimiento del control de temperatura y el sistema de instrumentación, se realizó la simulación de un sistema de control en lazo cerrado y luego se implementó usando una tarjeta de adquisición de datos (DAQ), el software de LabVIEW y dispositivos electrónicos en el prototipo de planta de tratamiento de aguas residuales para comparar ambos resultados. Finalmente, el efluente del tratamiento secundario realizado fue analizado en un laboratorio de aguas certificado para obtener análisis detallado y compararlo con el afluente inicial.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

J. A. Romero Rojas, Tratamiento de Aguas Residuales: Teoría y principios de diseño. Bogotá: Escuela Colombiana de Ingeniería, 2004. Accessed: May 08, 2023. [Online]. Available: https://books.google.com/books/about/Tratamiento_de_aguas_residuales.html?id=a94mHAAACAAJ

C. y T. Ministerio de Vivienda, “Saneamiento de vertimientos | Minvivienda.”, Sep. 14, 2021 Accessed: May 02, 2023. [Online]. Available: https://www.minvivienda.gov.co/viceministerio-de-agua-y-saneamiento-basico/saneamiento-de-vertimientos

El Tiempo, “Resolución sobre uso de aguas residuales en Colombia,” El Ministerio de Ambiente expidió resolución que promueve su reúso en actividades industriales, Jan. 23, 2022. Accessed: May 08, 2023. [Online]. Available: https://www.eltiempo.com/vida/medio-ambiente/resolucion-sobre-uso-de-aguas-residuales-en-colombia-646769

D. S. Quintero, M. A. Zapata, and J. Guerrero, “Modelo de costos para el tratamiento de las aguas residuales en la región,” Scientia et Technica Año XIII, vol. 37, pp. 591–596, 2007.

D. F. Ramírez Jiménez, “Sistema de medición y control de temperatura para un prototipo de planta

de tratamiento de aguas residuales,” Investigación e Innovación en Ingenierías, vol. 9, no. 1, pp. 100–113, Apr. 2021, DOI: 10.17081/invinno.9.1.4305.

M. L. Andrade Avalos, D. F. Borja Mayorga, and M. J. García Veloz, “Diseño y cotización de una planta de tratamiento de aguas residuales para parroquias rurales del Cantón Riobamba - Provincia de Chimborazo-Ecuador,” Conciencia Digital, vol. 4, no. 2, pp. 198–214, Apr. 2021, DOI: 10.33262/concienciadigital.v4i2.1659.

G. Wang et al., “Activated carbon enhanced traditional activated sludge process for chemical explosion accident wastewater treatment,” Environ Res, vol. 225, pp. 1–12, May 2023, DOI: 10.1016/j.envres.2023.115595.

M. Ji et al., “Water-energy-greenhouse gas nexus of a novel high-rate activated sludge-two-stage vertical up-flow constructed wetland system for low-carbon wastewater treatment,” Water Res, vol. 229, Feb. 2023, DOI: 10.1016/j.watres.2022.119491.

M. V. A. Corpuz et al., “Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor,” Science of the Total Environment, vol. 786, Sep. 2021, DOI: 10.1016/j.scitotenv.2021.147475.

O. I. Brikova, E. K. Grudyaeva, S. E. Dushin, and I. V Zhukov, “The Influence of Ambient Temperature on the Process of Biological Treatment in the Model ASM1,” in 2019 III International Conference on Control in Technical Systems (CTS), 2019, pp. 136–139. DOI: 10.1109/CTS48763.2019.8973313.

C. Hernández-Crespo, N. Oliver, M. Peña, M. Añó, and M. Martín, “Valorisation of drinking water treatment sludge as substrate in subsurface flow constructed wetlands for upgrading treated wastewater,” Process Safety and Environmental Protection, vol. 158, pp. 486–494, Feb. 2022, DOI: 10.1016/j.psep.2021.12.035.

J. González-Camejo, S. Aparicio, M. Pachés, L. Borrás, and A. Seco, “Comprehensive assessment of the microalgae-nitrifying bacteria competition in microalgae-based wastewater treatment systems: Relevant factors, evaluation methods and control strategies,” Algal Research, vol. 61. Elsevier B.V., Jan. 01, 2022. DOI: 10.1016/j.algal.2021.102563.

J. S. F. Bados and I. Y. P. Morejon, “Design of a PID Control System for a Wastewater Treatment Plant,” in 2020 3rd International Conference on Robotics, Control and Automation Engineering, RCAE 2020, Institute of Electrical and Electronics Engineers Inc., Nov. 2020, pp. 31–35. DOI: 10.1109/RCAE51546.2020.9294199.

V. Nenov, H. Yemendzhiev, T. Kostadinov, and S. Simeonov, “Intelligent Control of Activated Sludge Reactor Performance by DO Consumption Data,” in 2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA), 2022, pp. 1–3. DOI: 10.1109/SIELA54794.2022.9845788.

A. H. Jagaba et al., “Combined treatment of domestic and pulp and paper industry wastewater in a rice straw embedded activated sludge bioreactor to achieve sustainable development goals,” Case Studies in Chemical and Environmental Engineering, vol. 6, Dec. 2022, DOI: 10.1016/j.cscee.2022.100261.

S. Revollar, P. Vega, M. Francisco, M. Meneses, and R. Vilanova, “Activated Sludge Process control strategy based on the dynamic analysis of environmental costs,” in 2020 24th International Conference on System Theory, Control and Computing, ICSTCC 2020

- Proceedings, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 576–581. DOI: 10.1109/ICSTCC50638.2020.9259637.

M. C. Mora Hernández and M. D. Pinilla Acero, “Implementación de un sistema de tratamiento de aguas

residuales para recirculación en un baño portátil fabricado por la empresa Quimerk LTDA,” Universidad de La Salle, Bogotá, 2017.

J. Lenin Ramón Valencia, J. Alexander Ramón Valencia, and J. Orlando Maldonado Bautista, “Software de simulación para el diseño de reactores de lodos activados,” Revista Colombiana de Tecnologías de Avanzada, vol. 2, no. 28, pp. 77–81, 2016. https://doi.org/10.24054/16927257.v28.n28.2016.2468

J. A. Ospina Duque, Á. P. Muñoz Gómez, DF Ramírez-Jiménez, and E. Marín García, “Sistema de medición y visualización de potencial de hidrógeno para un prototipo de planta de tratamiento de aguas residuales usando lodos activados,” Revista Educación

en Ingeniería, vol. 3, no. 6, pp. 50–56, Dec. 2008, DOI: 10.26507/REI.V3N6.60.

J. V Jegatheesan, L. Shu, L. Piet, and C. Chiemchaisri, Principles and Applications of Environmental Biotechnology for a Sustainable Future. Springer, 2017. DOI: 10.1007/978-981-10-1866-4.

C. Chan, A. Guisasola, and J. A. Baeza, “Living on the edge: Prospects for enhanced biological phosphorus removal at low sludge retention time under different temperature scenarios,” Chemosphere, vol. 258, Nov. 2020, DOI: 10.1016/j.chemosphere.2020.127230.

Extech Instruments, "Manual del usuario Modelo 407510," Yumpu. [En línea]. Disponible en: https://www.yumpu.com/es/document/view/19628516/manual-del-usuario-modelo-407510-extech-instruments. Accessed: Mar. 05, 2024. [Online].

MathWorks Inc. Company, “System Identification Toolbox Documentation - MathWorks América La-

tina. Sep.” 2023. Accessed: Mar. 02, 2024. [Online]. Available: https://la.mathworks.com/help/ident/

K. Ogata, Ingeniería de Control Moderna, vol. 5. Pearson Educación, 2010.

R. C. Dorf and R. H. Bishop, Modern Control Systems, 13th ed. Boston: Pearson, 2016.

D. F. Ramirez Jimenez, A. L. Parrado, and J. V. Medina, “Overview of a framework for Implementation of digital controllers in Energia IDE using Texas Instruments microcontrollers,” in Proceedings of the 2021 IEEE 5th Colombian Conference on Automatic

Control, CCAC 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 13–18. DOI: 10.1109/CCAC51819.2021.9633305.

The Engineering Concepts, “PID Controller - What-is-PID-controller-How-it-works,” The Engineering Concepts. [En línea]. Disponible en: https://www.theengineeringconcepts.com/pid-controller/. Accessed: Mar. 05, 2024. [Online].

A. Corripio B. and S. Carlos A., Principles and practice of automatic process control, 3rd ed. Wiley, 2005.

V. M. Alfaro Ruíz, “Métodos De Sintonización De Controladores Pid Que Operan Como Reguladores, ”Revista de la Universidad de Costa Rica, vol. 12, no. 1 y 2, pp. 21–36, 2022. https://doi.org/10.15517/ring.v12i1-2.6430

J. Hoyos-Gutiérrez, J. Cardona-Aristizabal, P. Muñoz-Gutiérrez and D. Ramirez-Jimenez, “A Systematic Literature Review on Rapid Control Prototyping Applications,” in IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 18, no. 1, pp. 76-85, Feb. 2023, DOI: 10.1109/RITA.2023.3250559

Ministerio de Agricultura de Colombia, Uso del agua y residuos líquidos, Decreto 1594 de junio de 1984.

Ministerio de la Protección Social de Colombia, Sistema para la protección y control de la calidad del agua para consumo humano, Decreto 1575 de mayo de 2007.

Ministerios de la Protección Social y de Ambiente, Vivienda y Desarrollo Territorial de Colombia, Características, instrumentos básicos y frecuencias del sistema de control y vigilancia para la calidad del agua para consumo humano, Resolución 2115 de junio de

Cómo citar
Ramírez-Jiménez, D. F., Bedoya-Benítez, P. A., & Munoz-Gutierrez, P. A. (2024). Sistema de visualización y control para una planta de tratamiento de aguas residuales de laboratorio usando tratamiento biológico. Ciencia E Ingeniería Neogranadina, 34(1), 105–122. https://doi.org/10.18359/rcin.7270
Publicado
2024-06-30
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code

Algunos artículos similares: