Relation between the mechanical and tribological properties of nitrided Ti6AL4V ELI by glow discharge plasma

  • Javier Rojas Tavera Universidad Industrial de Santander UIS
  • Dario Yesid Peña Ballesteros Universidad Industrial de Santander UIS
  • Hugo Armando Estupiñán Durán Universidad Nacional de Colombia
Keywords: Nitriding by glow discharge, Ti6Al4V ELI, nanoindentation, tribology.

Abstract

This paper presents the study of the tribological behavior, rigidity and hardness, of the Ti6Al4V ELI alloy surface, after the performance of a glow discharge nitriding process at 450, 480 and 520 °C. The tribological pair used was metal-metal (Ti6Al4V ELI pin - Ti6Al4V ELI pre-treated disc) for the respective calculation of the coefficient of friction. Nanoindentation tests were performed with an ultra-high hardness tip with a known stiffness modulus, which provided the average hardness and Young's modulus in GPa according to ISO 14577 and ASTM G99-95 standards, respectively. Also, for the characterization of the substrate, electronic scanning microscopy, atomic force microscopy, and X-ray diffraction were used, to obtain, thus, important elasti-plastic behavioral characteristics, before and after the glow discharge plasma nitriding process was applied to the alloy.

Author Biographies

Javier Rojas Tavera, Universidad Industrial de Santander UIS
Ing. Metalúrgico. Universidad Industrial de Santander UIS, Bucaramanga, Colombia
Dario Yesid Peña Ballesteros, Universidad Industrial de Santander UIS
Ing. Metalúrgico, Ph.D, Profesor Asociado, Investigador Grupo Corrosión, Escuela de Ingeniería Metalúrgica.
Hugo Armando Estupiñán Durán, Universidad Nacional de Colombia
Ing. Metalúrgico, Ph.D, Profesor Asistente, Grupo de Ciencia y Tecnología de Materiales, Departamento de materiales y minerales. Universidad Nacional de Colombia, Sede Medellín, Colombia

Downloads

Download data is not yet available.

Languages:

es

Author Biographies

Javier Rojas Tavera, Universidad Industrial de Santander UIS
Ing. Metalúrgico. Universidad Industrial de Santander UIS, Bucaramanga, Colombia
Dario Yesid Peña Ballesteros, Universidad Industrial de Santander UIS
Ing. Metalúrgico, Ph.D, Profesor Asociado, Investigador Grupo Corrosión, Escuela de Ingeniería Metalúrgica.
Hugo Armando Estupiñán Durán, Universidad Nacional de Colombia
Ing. Metalúrgico, Ph.D, Profesor Asistente, Grupo de Ciencia y Tecnología de Materiales, Departamento de materiales y minerales. Universidad Nacional de Colombia, Sede Medellín, Colombia

References

Cunningham, B.W., Hu, N., Zorn, C.M. & McAfee, P.C. (2009). Bioactive titanium calcium phosphate coating for disc arthroplasty: analysis of 58 vertebral end plates after 6- to 12-month implantation. The Spine Journal, 9, pp.836–845. http://dx.doi.org/10.1016/j.spinee.2009.04.015

Fraczek, T., Olejnik, M., Jasi-ski, J. & Skuza, Z. (2011). Short-term low temperature glow discharge nitriding of 316l austenitic steel. METABK, 50(3), pp.151-154.

Kashaev, N., Stock, H.-R. & Mayr, P. (2004). Nitriding of ti – 6% al – 4% v alloy in the plasma of an intensified glow discharge. Metal Science and Heat Treatment, 46(7–8), pp.294-298. http://dx.doi.org/10.1023/B:MSAT.0000048837.39784.e2

Sun, Y. & Bell, T. (1997). A numerical model of plasma nitriding of low alloy steel. Materials Science and Engineering, 224(1-2), pp.33-47. http://dx.doi.org/10.1016/S0921-5093(96)10561-X

Lachtin, J., Krymskij, J. & Sernionov, P.A. (1964). Metalloviedienie i termiceskaja obrabotka metallov. Moscú, Rusia.

Robertson, J. (1993). Deposition mechanisms for promoting sp3 bonding in diamond-like carbon. Diamond and Related Materials, 2(5-7), pp.984-989. http://dx.doi.org/10.1016/0925-9635(93)90262-Z

Meletis, E.I. (2002) Intensified plasma-assisted processing: science and engineering. Surface and Coating Technology, 149, pp.95–113. http://dx.doi.org/10.1016/S0257-8972(01)01441-4

Andrade, M.J. (2007). Comportamiento electroquímico de aleación de Ti6Al4V anodizada en solución de NaH2PO4.2H2O. Scientia et Technica A-o XIII, 36, pp.215-220.

Oliver, W.C., Pharr, G.M. (1992). "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments," J. Mater. Res., 7, pp.1564-1583. http://dx.doi.org/10.1557/JMR.1992.1564

Hertz, H. (1982). On the contact of rigid elastic solids and on hardness. Verhandlungen des Vereins zur Beförderung des Gewerbefleisses. Leipzig, pp.90-156.

Sneddon, I.N. (1882). The relation between load and penetration in axisymmetric business problem for a punch of arbitrary profile. International Journal of Engineering Science, 3, pp.47-57. http://dx.doi.org/10.1016/0020-7225(65)90019-4

Askeland, D.R. (1998). Ciencia e ingeniería de los Materiales. 3ª Edición. International Thomsom Editores, pp.92-97,107-109.

ASM Comitte of Metallography of titanium and titanium alloys. (1980). Microestructure of titanium and titanium alloys. Handbook eighth edition, American Society of Metals, no 7, pp.312-344.

Tang, J.G., Liu, D.X., Tang, C.B. & Zhang, X.H. (2013). Surface modification of Ti-6Al-4V alloy by cathode assisting discharge setup and conventional plasma nitriding methods. Science China, 56(8), pp.1858–1864. http://dx.doi.org/10.1007/s11431-013-5252-z

Khalaf, M.K., Chiad, B.T., Al-Zubaydi T.L. & Alani, Z.T. (2011). Surface Modification of Ti6Al4V Alloy by Glow Dicharge-Plasma Nitriding. Iraqi Journal of Physics, 9(16), pp. 34-40.

Brading, H.J. (1992). Plasma nitriding with Nitrogen, Hydrogen, and Argon Gas Mixture. Surface Engineering, 8(3), p.207. http://dx.doi.org/10.1179/sur.1992.8.3.206

da Silva, S.L.R., Kerber, L.O., Amaral, L. & dos Santos, C.A. (1999). X-ray diffraction measurements of plasma-nitrided Ti–6Al–4V. Surface and Coatings Technology, 116–119, pp.342-346. http://dx.doi.org/10.1016/S0257-8972(99)00204-2

Meza, J.M., Chaves, C.A. & Vélez, J.M. (2006). Técnicas de indentación: medición de propiedades mecánicas en cerámicas. DYNA, Journal of the Facultad de Minas, Universidad Nacional de Colombia – Medellín Campus, 73(149).

Tang, C.Y., Tsui, C.P., Janackovic, D.J. & Uskokovic, P.S. (2006). Nanomechanical properties evaluation of bioactive glass coatings on titanium alloy substrate. Journal of Optoelectronics and Advanced Materials, 8(3), pp.1194 - 1199

King, E., Fernández González, B.J., de Damborenea González, J.J. & Ruiz Fernández, J. (2000). Nitruración gaseosa a elevada temperatura de la aleación TÍ6AI4V para mejorar su resistencia al desgaste. Revista de Metalurgia, 36, pp.403-409. http://dx.doi.org/10.3989/revmetalm.2000.v36.i6.591

Bemporad, E., Sebastiani, M., Staia, M.H. & Puchi Cabrera, E. (2008). Tribological studies on PVD/HVOF duplex coatings on Ti6Al4V substrate. Surface & Coatings Technology, 203, pp.566–571. http://dx.doi.org/10.1016/j.surfcoat.2008.06.055

Ceschini, L., Lanzoni, E., Martini, C., Prandstraller, D. & Sambogna, G. (2008). Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating. WEAR, 264(1-2), pp.86-95. http://dx.doi.org/10.1016/j.wear.2007.01.045

Barbieri, F.C., Otani, C., Lepienski, C.M., Urruchi, W.I., Maciel, H.S. & Petraconi, G. (2002). Nanoindentation study of Ti6Al4V alloy nitrided by low intensity plasma jet process. Vacum, 67, pp.457-461. http://dx.doi.org/10.1016/S0042-207X(02)00231-2

How to Cite
Rojas Tavera, J., Peña Ballesteros, D. Y., & Estupiñán Durán, H. A. (2014). Relation between the mechanical and tribological properties of nitrided Ti6AL4V ELI by glow discharge plasma. Ciencia E Ingenieria Neogranadina, 24(2), 7–21. https://doi.org/10.18359/rcin.390
Published
2014-12-01
Section
ARTICLES

Altmetric

QR Code