Genética‌‌ de‌‌ las‌‌ fisuras‌‌ labiopalatinas‌‌:‌ una‌‌ visión‌ general‌‌ de‌‌ los‌‌ factores‌‌ de‌‌ riesgo‌‌ genéticos‌‌ y‌‌ ambientales

Resumen

Las fisuras labiopalatinas son malformaciones congénitas del sistema estomatognático, se presentan por alteración de las estructuras anatómicas del cráneo, la cara y la cavidad bucal, debido a una falla en la fusión de tejidos en la embriogénesis; las malformaciones pueden ser del labio, el paladar duro, el velo del paladar, la mucosa palatina y en algunos casos de la cavidad nasal; por lo demás, afectan las estructuras que participan en las funciones del lenguaje, el habla y la audición. Objetivo: Identificar los factores genéticos y ambientales asociados a las fisuras labiopalatinas.

Metodología: la revisión bibliográfica se realizó en bases de datos académicas PubMed, LILACS, OVID- MEDLINE usando lenguaje normalizado con términos DECS-LILACS: exposición a riesgos ambientales, fisura del paladar, labio leporino, genética, medicina de precisión y síndrome; se aplicaron filtros de búsqueda propios de las bases de datos, tipos de textos científicos e información relevante para la investigación. De acuerdo con los resultados de la búsqueda bibliográfica se encontró que la etio- logía de las fisuras es multifactorial y se asocia a factores genéticos y ambientales. La identificación de diversos genes relacionados con estas malformaciones ha permitido reconocer oportunamente cuándo una fisura es sindrómica o no sindrómica, lo que lleva a entender la interacción gen por gen, a identificar variantes funcionales y a comprender su importancia etiológica.

Conclusiones: el estudio y el conocimiento acerca de los mecanismos moleculares que se encuentran involucrados en la formación de las fisuras labiopalatinas ha tomado fuerza gracias al entendimiento del genoma humano y al desarrollo de herramientas modernas de biología molecular que permiten identificar gran cantidad de datos de secuencia, haciendo que los genes candidatos aumenten constantemente. Esto permitirá un manejo oportuno de la enfermedad, la identificación del riesgo de ocurrencia y un tratamiento especializado mediante la medicina de precisión.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Bruce CM. Embriología humana y biología del desarrollo. 5 ed. Filadelfia: Elsevier Saunders; 2014.

Cameron AC, Widmer RP. Manual de odontología pediátrica. 3 ed. En: Tratamiento del labio leporino y el paladar hendido. Barcelona: Elsevier Mosby; 2010. p. 379-399.

Silva DP da, Dornelle S, Paniagua LM, Costa SS da, Collares MVM. Aspectos patofisiológicos do esfíncter velofaríngeo nasfissuras palatinas. Arq int otorrinolaringol. 2008:12:426-435. https://www.researchgate.net/publication/26849750_Aspectos_patofisiologicos_do_esfincter_velofaringeo_nas_fissuras_palatinas

Saldarriaga W, Isaza C, Ramírez Cheyne J. Embriolo- gía humana integrada. 2 ed. Santiago de Cali: U. del Valle; 2019.

Rivera CA, Arenas MJ. Bases ambientales y gené- ticas de las fisuras orofaciales: revisión. J Oral Res. 2013; 2(1):35-41. DOI: https://doi.org/10.17126/joralres.2013.008

Pérez AC, Duque EA. Incidencia y/o prevalencia del LPH en el continente europeo. Pap Knowl Towar a Media Hist Doc. 2019.

Serrano C, Ruiz J, Quinceno L, Rodríguez M. Labio y/o paladar hendido: una revisión*. Ustasalud. 2009; 8:44- 52. DOI: https://doi.org/10.15332/us.v8i1.1180

Plasencia-Dueñas EA, Díaz-Vélez C, Dueñas-Roque MM. Factores asociados a la presencia de fisura labio- palatina en recién nacidos en un hospital peruano de tercer nivel de atención. Un estudio de casos y controles. Acta méd. Perú 2020; 37(3):304-311. DOI: https://doi.org/10.35663/amp.2020.373.942

Sánchez LR. Prevalencia de pacientes con fisuras oro- faciales y factores familiares asociados en el Hospital Regional Docente Las Mercedes Chiclayo 2016. Rev Cient Epistemia. 2018;2. http://revistas.uss.edu.pe/index.php/EPT/article/view/799/680 DOI: https://doi. org/10.26495/re.v2i1.799

Berryhill W. Otologic Concerns for Cleft Lip and Pa- late Patient. Oral Maxillofac Surg Clin North Am. 2016; 28(2):177-179. DOI: https://doi.org/10.1016/j.coms.2015.12.001

Palmero-Picazo J, Rodríguez MF, Martínez-Gutiérrez, M. Labio y paladar hendido. Conceptos actuales. Rev Mex Anestesiol. 2019:33 (SUPPL.1): 372-379. https://www.medigraphic.com/pdfs/actmed/am-2019/am194j.pdf

Leslie EJ, Mansilla MA, Biggs LC, Schuette K, Bullard S, Cooper M, et al. Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome-wide association on chromosome 1p22. Birth Defects Res A Clin Mol Teratol. 2012; 94(11):934-942. DOI: https://doi.org/10.1002/bdra.23076

Niemann S, Zhao C, Pascu F, Zhao Ch, Pascu F, Sta- hl U, Aulepp U, Niswander L, Weber JL, et al. Homozygous WNT3 Mutation Causes Tetra-Amelia in a Large Consanguineous Family. Am J Hum Genet. 2004; (14872406): 558-563. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182269/ DOI: https://doi.org/10.1086/382196

Estudio nacional de Salud Bucal ENSAB IV. [Internet] Bogotá: Ministerio de Salud y Protección social de Colombia; 2014 Disponible en: http://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ENSAB-IV-Situacion-Bucal-Actual.pdf

Escobar LM, Prada-Arismendy J, Téllez C, Caste- llanos J. Bases genéticas de la formación de fisuras labiales y/o palatinas en humanos. CES Odontology, 2013;26(1):57-67. Retrieved March 23, 2021, from http://www.scielo.org.co/scielo.php?script=sci_arttex-t&pid=S0120-971X2013000100006&lng=en&tlng=es

Isaza C, Manrique LA. Anomalías y síndromes asociados con labio y/o paladar hendido. Colomb Med. 1991;20:55-61.

Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011 Mar; 12(3):167- 78. DOI: https://doi.org/10.1038/nrg2933

Fogh-Andersen P. Epidemiology and etiology of clefts. Birth Defects Orig Artic Ser. 1972 Jun; 7(7):50-3. PMID: 5173241.

Marazita ML, Spence MA, Melnick M. Genetic analysis of cleft lip with or without cleft palate in Danish kindreds. Am J Med Genet. 1984; 19(1):9-18. DOI: https://doi.org/10.1002/ajmg.1320190104

Mitchell LE. Mode of inheritance of oral clefts. En: Wyszyski DF, editor. Cleft Lip and Palate: From Origin to Treatment. Oxford University Press; 2002. p. 234- 239.

Little J, Cardy A, Munger RG. Tobacco smoking and oral clefts: a meta-analysis. Bull World Health Organ. 2004 Mar; 82(3):213-8.

Van-Rooij IA, Wegerif MJ, Roelofs HM, Peters WH, Kuijpers-Jagtman AM, Zielhuis GA, Merkus HM, Steegers-Theunissen RP. Smoking, genetic polymorphisms in biotransformation enzymes, and nonsyndromic oral clefting: a gene-environment interaction. Epidemiology. 2001 Sep; 12(5):502-7. DOI: https://doi.org/10.1097/00001648-200109000-00007

Beaty TH, Hetmanski JB, Zeiger JS, Fan YT, Liang KY, VanderKolk CA, McIntosh I. Testing candidate genes for non-syndromic oral clefts using a case-parent trio design. Genet Epidemiol. 2002 Jan; 22(1):1-11. DOI: https://doi.org/10.1002/gepi.1039

Munger RG, Romitti PA, Daack-Hir- sch S, Burns TL, Murray JC, Hanson J. Maternal alcohol use and risk of orofacial cleft birth defects. Teratology. 1996 Jul; 54(1):27-33.

Safra MJ, Oakley GP Jr. Association between cleft lip with or without cleft palate and prenatal exposure to diazepam. Lancet. 1975 Sep 13; 2(7933):478-80. DOI: https://doi.org/10.1016/S0140-6736(75)90548-6

Czeizel A, Kiss R, Rackz K, Mohori K, Glaz E. Case-control cytogenetic study in offspring of mothers treated with bromocriptine during early pregnancy. Mutation Research. January 1989; 210(1):23-27. DOI: https://doi.org/10.1016/0027-5107(89)90040-7

Phan M, Conte F, Khandelwal KD, Ockeloen CW, Bartzela T, Kleefstra T, et al. Tooth agenesis and orofacial clefting: genetic brothers in arms Hum Genet. 2016; 135:1299-1327. DOI: https://doi.org/10.1007/s00439-016-1733-z

Ramírez D, Saldarriaga W, Pachajoa H, Isaza C. Síndrome de Apert, una aproximación para un diagnóstico clínico. Reporte de caso. Revista Salud Uninorte. 2010; 26(1):165-169. Retrieved March 22, 2021, from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-55522010000100016&lng=en&tlng=es

Carré A, Hamza RT, Kariyawasam D, Guillot L, Teis- sier R, Tron E, Castanet M, Dupuy C, El Kholy M, Polak M. A novel FOXE1 mutation (R73S) in Bamforth-Lazarus syndrome causing increased thyroidal gene expression. Thyroid: official journal of the American Thyroid Association. 2016; 24(4):649-654. DOI: https://doi.org/10.1089/thy.2013.0417

Ercoli G, Mazzitelli N, Rittler M. Síndrome de Bartsocas-Papas y secuencia de bridas amnióticas: semejanzas clínicas sugieren un factor etiopatogénico común. Archivos de Pediatría del Uruguay. 2017; 88(1):24- 31. Recuperado en 22 de marzo de 2021, de http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-12492017000100006&lng=es&tlng=es

Milunsky JM, Maher TA, Zhao G, Roberts AE, Stalker HJ, Zori RT, Burch MN, Clemens M, Mulliken JB, Smith R, Lin AE. TFAP2A mutations result in branchio-oculo-facial syndrome. Am J Hum Genet. 2008 May;82(5):1171-7. Erratum in: Am J Hum Genet. 2009 Feb;84(2):301. PMID: 18423521; PMCID: PMC2427243. DOI: https://doi.org/10.1016/j.ajhg.2008.03.005

Vissers LE, Van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC, Schoenmakers EF, Brunner HG, Veltman JA, Van Kessel AG. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004; 36(9):955-957. DOI: https://doi.org/10.1038/ng1407

Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. American journal of medical genetic. Part A. 2010; 152A(3):674-686. DOI: https://doi.org/10.1002/ajmg.a.33323

Avila JR, Jezewski PA, Vieira AR, Orioli IM, Castilla EE, Christensen K, Daack-Hirsch S, Romitti PA, Murray JC. PVRL1 variants contribute to non-syndromic cleft lip and palate in multiple populations. American journal of medical genetics. Part A, 2006; 140(23):2562- 2570. DOI: https://doi.org/10.1002/ajmg.a.31367

Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet. 2004; 36(6):631-635. DOI: https://doi.org/10.1038/ng1364

Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet. 2004; 36(6):636-641. DOI: https://doi.org/10.1038/ ng1363

Luna-Peláez N, March-Díaz R, Ceballos-Chávez M. Guerrero-Martínez JA, Grazioli P, García-Gutié- rrez P, et al. The Cornelia de Lange Syndrome-associated factor NIPBL interacts with BRD4 ET domain for transcription control of a common set of genes. Cell Death Dis 2019; 10(8):548. DOI: https://doi.org/10.1038/s41419-019-1792-x

Gorry MC, Preston RA, White GJ, Zhang Y, Singhal VK, Losken HW, Parker MG, Nwokoro NA, Post JC, Ehrlich GD. Crouzon syndrome: mutations in two spliceoforms of FGFR2 and a common point mutation shared with Jackson-Weiss syndrome. Hum Mol Genet. 1995 Aug; 4(8):1387-90. DOI: https://doi.org/10.1093/hmg/4.8.1387

Lin Y, Gao H, Ai S, Eswarakumar J, Zhu Y, Chen C, Li T, Liu B, Jiang H, Liu Y, Li Y, Wu Q, Li H, Liang X, Jin C, Huang X, Lin L. FGFR2 mutations and associated clinical observations in two Chinese patients with Crouzon syndrome. Molecular medicine reports. 2017; 16(5):5841-5846. DOI: https://doi.org/10.3892/mmr.2017.7397

Packham EA, Brook JD. T-box genes in human disorders. Hum Mol Genet. 2003; 12 (Spec n.° 1):R37-44. DOI: https://doi.org/10.1093/hmg/ddg077

Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994; 372(6506):525-530. DOI: https://doi.org/10.1038/372525a0

Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994; 79(6):1111-1120. DOI: https://doi.org/10.1016/0092-8674(94)90041-8

Unger S, Scherer G, Superti-Furga A. Campomelic Dysplasia. 2008 Jul 31 [Updated 2021 Mar 18]. En: Adam MP, Ardinger HH, Pagon RA, et al. Editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1760/

Murata Y, Kurosaka H, Ohata Y, Aikawa T, Takahata S, Fujii K, et al. A novel PTCH1 mutation in basal cell nevus syndrome with rare craniofacial features. Hum Genome Var. 2019; 6(16). DOI: https://doi.org/10.1038/s41439-019-0047-9

McGrath JA, Duijf PH, Doetsch V, Irvine AD, de Waal R, Vanmolkot KR, Wessagowit V, Kelly A, Atherton DJ, Griffiths WA, Orlow SJ, van Haeringen A, Au- sems MG, Yang A, McKeon F, Bamshad MA, Brunner HG, Hamel BC, van Bokhoven H. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet. 2001 Feb 1; 10(3):221-9. DOI: https://doi.org/10.1093/hmg/10.3.221

Roessler E, Belloni E, Gaudenz K, Jay P, Ber- ta P, Scherer SW, Tsui LC, Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996; 14(3):357-360. DOI: https://doi.org/10.1038/ng1196-357

Roessler E, Du YZ, Mullor JL, Casas E, Allen WP, Gillessen-Kaesbach G, Roeder ER, Ming JE, Ruiz i Altaba A, Muenke M. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc Natl Acad Sci USA. 2003; 100(23):13424-13429. DOI: https://doi.org/10.1073/pnas.2235734100

Wallis DE, Roessler E, Hehr U, Nanni L, Wiltshire T, Richieri-Costa A, Gillessen-Kaesbach G, Zackai EH,Rommens J, Muenke M. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet. 1999; 22(2):196-198. DOI: https://doi.org/10.1038/9718

Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC, Maystadt I, Dallapiccola B, Verellen-Dumoulin C. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012; 90(1):119-124. DOI: https://doi.org/10.1016/j.ajhg.2011.11.021

Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010; 42(9):790-793. DOI: https://doi.org/10.1038/ng.646

Sarfati J, Bouvattier C, Bry-Gauillard H, Cartes A, Bouligand J, Young, J. Kallmann syndrome with FGFR1 and KAL1 mutations detected during fetal life. Orphanet journal of rare diseases. 2015; 10(71). DOI: https://doi.org/10.1186/s13023-015-0287-9

Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, Meyers J, Leitch CC, Katsanis N, Sharifi N, Xu FL, Myers LA, Spevak PJ, Cameron DE, De Backer J, Hellemans J, Chen Y, Davis EC, Webb CL, Kress W, Coucke P, Rifkin DB, De Paepe AM, Dietz HC. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005; 37(3):275-281. DOI: https://doi.org/10.1038/ng1511

Acosta-Aragón MA, Sierra-Zúñiga MF. Síndrome de loeys Dietz, una mutación en el gen TGFBR2, primer reporte en el suroccidente colombiano. Medicina y laboratorio. 2017; 23:187-194. DOI: https://doi.org/10.36384/01232576.53

Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, Hadley DW, Tifft C, Zhang L, Wilkie AO, van der Smagt JJ, Gorlin RJ, Burgess SM, Bardwell VJ, Black GC, Biesecker LG. Oculofaciocardio dental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet. 2004; 36(4):411-416. DOI: https://doi.org/10.1038/ng1321

Tiol MA, Maldonado ZN, Tiol CA, Esparza RN, Gar- cía RE. Reporte de dos casos del síndrome óculo-facio-cardio-dental (OFCD) en madre e hija. Rev Mex Cir Bucal Maxilofacial. 2017; 13(1):20-24.

Fontanella B, Russolillo G, Meroni G. MID1 mutations in patients with X-linked Opitz G/BBB syndrome. Hum Mutat. 2008 May;29(5):584-94. DOI: https://doi.org/10.1002/humu.20706

AlKattan WM, Al-Qattan MM, Bafaqeeh SA. The pathogenesis of the clinical features of oral-facial-digital syndrome type I. Saudi medical journal. 2015;36(11):1277-1284. DOI: https://doi.org/10.15537/smj.2015.11.12446

Braybrook C, Doudney K, Marcano AC, Arnason A, Bjornsson A, Patton MA, Goodfellow PJ, Moore GE, Stanier P. The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat Genet. 2001;29(2):179-183. DOI: https://doi.org/10.1038/ng730

Selvi R, Mukunda-Priyanka A. Role of SOX9 in the Etiology of Pierre-Robin Syndrome. Iranian journal of basic medical sciences. 2013;16(5):700-4.

Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, de Lima RL, Daack-Hir- sch S, Sander A, McDonald-McGinn DM, Zackai EH, Lammer EJ, Aylsworth AS, Ardinger HH, Lidral AC, Pober BR, Moreno L, Arcos-Burgos M, Valencia C, Houdayer C, Bahuau M, Moretti-Ferreira D, Richie- ri-Costa A, Dixon MJ, Murray JC. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet. 2002;32(2):285-289. DOI: https://doi.org/10.1038/ng985

Kanno K, Suzuki Y, Yamada A, Aoki Y, Kure S, Matsubara Y. Association between nonsyndromic cleft lip with or without cleft palate and the glutamic acid decarboxylase 67 gene in the Japanese population. AJMG. 2004;127A (1):11-16. DOI: https://doi.org/10.1002/ajmg.a.20649

Inoue H, Kayano S, Aoki Y, Kure S, Yamada A, Hata A, Matsubara Y, Suzuki Y. Association of the GABRB3 gene with nonsyndromic oral clefts. Cleft Palate Craniofac J. 2008 May; 45(3):261-6. DOI: https://doi.org/10.1597/06-142

Suazo J, Santos JL, Scapoli L, Jara L, Blanco R. Association between TGFB3 and nonsyndromic cleft lip with or without cleft palate in a Chilean population. Cleft Palate Craniofac J. 2010 Sep; 47(5):513-7. DOI: https://doi.org/10.1597/09-015

Piceci F, Morlino S, Castori M, Buffone E, De Luca A, Grammatico P, Guida V. Identification of a second HOXA2 nonsense mutation in a family with autosomal dominant non-syndromic microtia and distinctive ear morphology. Clin Genet. 2017 May; 91(5):774-779. DOI: https://doi.org/10.1111/cge.12845

Saleem K, Zaib T, Sunab W, Fu S. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate. Cellpress. 2019; 5(12). DOI: https://doi.org/10.1016/j.heliyon.2019.e03019

Cesario JM, Landin-Malt A, Deacon LJ, Sandberg M, Vogt D, Tang Z, Zhao Y, Brown S, Rubenstein JL, Jeong J. Lhx6 and Lhx8 promote palate development through negative regulation of a cell cycle inhibitor gene, p57Kip2. Human molecular genetics. 2015; 24(17): 5024-5039. DOI: https://doi.org/10.1093/hmg/ddv223

Jezewski PA, Vieira AR, Nishimura C, Ludwig B, Jo- hnson M, O’Brien SE, Daack-Hirsch S, Schultz RE, Weber A, Nepomucena B, Romitti PA, Christensen K, Orioli IM, Castilla EE, Machida J, Natsume N, Murray JC. Complete sequencing shows a role for MSX1 in non-syndromic cleft lip and palate. Journal of medical genetics. 2003; 40(6):399-407. DOI: https://doi.org/10.1136/jmg.40.6.399

Funato N, Nakamura M, Richardson JA, Srivastava D, Yanagisawa H. Tbx1 regulates oral epithelial adhesion and palatal development. Human molecular genetics. 2012; 21(11):2524-2537. DOI: https://doi.org/10.1093/hmg/dds071

Maili L, Letra A, Silva R, Buchanan E, Mulliken JB, Greives MR, Teichgraeber JF, et al. PBX‐WNT‐P63‐ IRF6 pathway in nonsyndromic cleft lip and palate. Birth Defect Research. 2019; 112(3):234-244. DOI: https://doi.org/10.1002/bdr2.1630

Lee JK, Park JW, Kim YH, Baek SH. Association between PAX9 single-nucleotide polymorphisms and nonsyndromic cleft lip with or without cleft palate. J Craniofac Surg. 2012 Sep; 23(5):1262-6. DOI: https://doi.org/10.1097/SCS.0b013e31824e27c7

Greene ND, Stanier P, Moore GE. Genetics of cleft lip and palate: syndromic genes contribute to the incidence of non-syndromic clefts. Human Molecular Genetics. 2004 April; 13(1):R73-R81. DOI: https://doi.org/10.1093/hmg/ddh052

Cómo citar
Pusapaz Pusapaz, D. E., Arturo Terranova, M. C. ., & Arturo Terranova, D. (2022). Genética‌‌ de‌‌ las‌‌ fisuras‌‌ labiopalatinas‌‌:‌ una‌‌ visión‌ general‌‌ de‌‌ los‌‌ factores‌‌ de‌‌ riesgo‌‌ genéticos‌‌ y‌‌ ambientales. Revista Med, 29(2), 93–106. https://doi.org/10.18359/rmed.5706
Publicado
2022-08-01
Sección
Artículos

Métricas

QR Code