Análisis teórico y computacional de la marcha normal y patológica: una revisión

  • Christian Cifuentes U. Nacional de Colombia
  • Fabio Martínez U. Nacional de Colombia
  • Eduardo Romero U. Nacional de Colombia
Palabras clave: modelos teóricos, marcha, biomecánica, ingeniería biomédica

Resumen

La marcha humana es el resultado de la compleja interacción entre varios subsistemas: neuromuscular, músculo-tendinoso y osteoarticular, que trabajan coordinadamente para generan la dinámica corporal necesaria para el desplazamiento bípedo. En la rutina clínica, el estudio de la marcha es la base de la identificación de trastornos patológicos, facilitando su diagnóstico, tratamiento y seguimiento. Tradicionalmente este análisis determina el conjunto de patrones que describen la dinámica del sistema. Sin embargo, éste análisis es insuficiente para evaluar algunos movimientos, sobre todo para los estadios tempranos de casi todos los movimientos patológicos. El desarrollo de diferentes modelos normales y patológicos ha permitido establecer diferencias objetivas para cada una de estas situaciones. En este artículo se hace una revisión de los modelos que describen la dinámica de la marcha humana normal y patológica, inspirados en la morfo-fisiología del sistema locomotor. Además, se hace un análisis sobre la efectividad de los modelos propuestos en la literatura para describir comportamientos patológicos.

Biografía del autor/a

Christian Cifuentes, U. Nacional de Colombia
Estudiante Maestría Ing. Biomédica - U. Nacional de Colombia
Fabio Martínez, U. Nacional de Colombia

Estudiante Doctorado en Ing. de Sistemas y Ciencias de la Computación - U. Nacional de Colombia

Eduardo Romero, U. Nacional de Colombia

Dir. Centro de Telemedicina y Grupo de Investigación
BioIngenium - U. Nacional de Colombia

 

Descargas

Los datos de descargas todavía no están disponibles.

Lenguajes:

es

Biografía del autor/a

Christian Cifuentes, U. Nacional de Colombia
Estudiante Maestría Ing. Biomédica - U. Nacional de Colombia
Fabio Martínez, U. Nacional de Colombia

Estudiante Doctorado en Ing. de Sistemas y Ciencias de la Computación - U. Nacional de Colombia

Eduardo Romero, U. Nacional de Colombia

Dir. Centro de Telemedicina y Grupo de Investigación
BioIngenium - U. Nacional de Colombia

 

Referencias bibliográficas

Zajac F, Neptune R, Kautz S. Biomechanics and muscle coordinationof human walking Part II: Lessons from dynamical simulationsand clinical implications. Gait Posture. 2003;17:1–17.

Fregly BJ. Design of Optimal Treatments for NeuromusculoskeletalDisorders using Patient-SpecificMultibody Dynamic Models.Int J Comput Vision and Biomech. 2008;r:1–31.

Baker R. Gait Analysis Methods in Rehabilitation. J NeuroengRehabil.2006;3:4–14.

Bermudez AP, Dolhagaray P, Duque V. Material de Apoyo a laAsignatura Kinesiterapia (I) – Capítulo11: Marcha; 2006. p. 179.

Polanco A, Rogriguez C. Modelos Dinámicos de Movimientos Humanos.In: 8vo congreso Iberoamericanode Ing. Mecánica; 2007.

Martínez F, Gómez F, Romero E. Análisis de Video para Estimacióndel Movimiento Humano: Una revisión. Revista Med.2009;17:95-106.

Martínez F, Gómez F, Romero E. Desarrollo de un laboratoriode marcha con integración sincrónicamediante una arquitecturaen módulos. Acta Biológica Colombiana. 2010;15.

Reinbolt J, Haftka R, Chmielewski T, Fregly B. A ComputationalFramework to Predict Post Treatment Outcome for Gait-relatedDisorders. Med Eng& Physics. 2008;30:434-43.

Ren L, Howard D, Kenney L. Computational Models to SynthesizeHuman Walking. J Bionic Eng. 2006;3:127-38.

Komura T, Nagano A, Kudoh S, Shinagawa Y. SimulatingPathological Gait using the Enhanced InvertedPendulum Model.J Biomech Eng. 2004;52(9):1-18.

Sanz C M. Marcha Patológica. Revista del pie y tobillo.2003;17:1-7.

Goñi J, García J M. Dinámica de los Sistemas Biológicos ModelandoComplejidad. Inicialización a la Investigación. RevistaElectrónica. 2006;1:1-9.

Zajac F, Neptune R, Kautz S. Biomechanics and Muscle Coordinationof Human Walking Part I: Introduction to Concepts,Power Transfer, Dynamics and Simulations. Gait Posture.2002;16:215-32.

Ackermann M. Dynamics and Energetics of Walking with Prostheses.University of Stuttgart; 2007.

Pandy M. Computer Modeling and Simulation of Human Movement.Ann Rev Biomed Eng. 2001;3:245-73.

Saunders M, Inman V T, Eberhart H D. The Major Determinantsin Normal and Pathological Gait. J Boneand Surgery.1953;35:543-58.

Standford University. Laboratorio Stanford; 2010. Availablefrom: http://nmbl.stanford.edu.

Horsman M, Koopman H, Van der Helm F, Poliacu L, Veeger H.Morphological Muscle and Joint Parameters for MusculoskeletalModelling of the Lower Extremity. Clin Biomech. 2007;22:239-47.

Inman V, Ralston H, Todd F. Human Walking 2nd Edition.Wilkins BW, editor. Rose J, Gamble JG editors; 1994

Ivanenko Y, Poppele R, Lacquaniti F. Five Basic Muscle ActivationPatterns Account for Muscle Activity during HumanLocomotion. J Physiol. 2004;556:267-82.

Minettif A, Alexander R. A Theory of Metabolic Costs for BipedalGaits. J Theor Biol. 1997;186:467-76.22. Lara M, Angulo M, Llanos L. Actividad Electromiográfica Normalen la Marcha Humana. Biomecanica.1996;7:110-6.

Gard S, Childress D. The Effect of Pelvic List on the VerticalDisplacement of the Trunk during Normal Walking. Gait Posture.1997;5:233-41.

Pandy M, Berme N. Quantitative Assessment of Gait Determinantsduring Single Stance Via a Three Dimensional Model/Part1. Normal Gait. J Biomech Eng. 1989;22:717-41.

García M, Ruina A, Coleman M, Chatterjee A. Passive DynamicModels of Human Gait; 1998. Departmentof Theoretical andApplied Mechanics.

McGeer T. Passive Dynamic Walking. J Biomech Eng.1998;123:264-9.

Kajita S, Yamaura T, Kobayashi A. Dynamic Walking Controlof a Biped Robot Along a Potential Energy Conserving Orbit.IEEE Trans Rob Autom. 1992;8:4-8.

Kuo A. A Simple Model of Bipedal Walking Predicts thePreferred Speed Step Length Relationship. J Biomech Eng.2001;123:264-9.

García M, Chatterjee A, Ruina A, Coleman M. The SimplestWalking Model: Stability, Complexity, and Scaling. J BiomechEng. 1998;120(2):281-8.

Collins S, Wisse M, Ruina A. A Three Dimensional Passive-Dynamic Walking Robot with Two Legsand Knees.Int J RobRes. 2001;17:607–615.

Frank B, Kevin C, Walker M, Rainbow M. Performance of aninverted pendulum model directly appliedto normal humangait. ClinBiomech. 2006;21:288 – 296.

Goswami A, Espiaun B, Keramane A. Limit Cycles and theirStability in a Passive Bipedal Gait. IEEE Magazine. 1998;1:246-51.

Martinez F, Gomez F, Romero E. A Kinematic Method forComputing the Motion of the Bodycentre-of-mass (CoM) duringWalking: A Bayesian Approach. Comp Meth Biomech BiomedEng. 2010;doi:10.1080/10255842.2010.486761.

Collins S, Ruina A. A Bipedal Walking Robot with Efficient andHuman-Like Gait; 2006.University of Michigan.

Thalmann D, Boulic R, Mas R. A Robust Approach for theControl of the Center of Mass with Inverse Kinetics. Computers& Graphics. 1996;20:5.

Kuo A D. Energetics of Actively Powered Locomotion Using theSimplest Walking Model. J Biomech Eng. 2002;124:113-20.

Kuo A D. The Six Determinants of Gait and the InvertedPendulum Analogy. A Dynamic Walking Perpective. HumanMovement Science. 2007;26:617-56.

Mochon S, MacMahon T. Ballistic Walking. J Biomech.1980;13:49-57.

Whittlesey S, Van Emmerik R, Hamill J. The Swing Phase ofHuman Walking Not a Passive Movement. Motor Control.2000;4:273-92.

Hurmuzlu Y. Dynamics of Bipedal Gait PartI: ObjectiveFunctions and the Contact Event of a PlanarFive-Link Biped.IEEE Magazine. 1998;24:1-18.

Sujatha M, Srinivasan, Tech B. Low-dimensional Modelingand Analysis of Human Gait with Application to the Gait ofTranstibial Prosthesis Users. The Ohio State University; 2007.

Perry M, Ayyappa E, Shan S, Torburn L. Below Knee AmputeeGait with Dynamic Elastic Response Prosthetic Feet. A PilotStudy. J Rehabil Res Dev. 1990;27:369-84.

Fonseca S, Hold K, Saltzman E. A Dynamical Model of Locomotionin Spastic Hemiplegic Cerebral Palsy Influence of WalkingSpeed. Clin Biomech. 2001;16:793-805.

Riley P, Kerrigan D C. Kinetics of Stiff-Legged Gait: InducedAcceleration Analysis. IEEE Transactionof Rehabilitation Engineering.1999;7:420.

Delp S, Loan J. A Graphics Based Software System to Developand Analyze Models of Musculoskeletal Structure. Comput BiolMedical. 1995;25:22–34.

Winby C, Lloyd D, Besier T, Kirk T. Muscle and External LoadContribution to Knee Joint Contact Loads during Normal Gait.J Biomech. 2009;42:2294-2300.

Inaba H, Miyazaki S, Hasegawa J. Muscle Driven Motion Simulationbased on Deformable Human Model Constructed fromReal Anatomical Slice Data. Lecture Notes in Comp Science.2002;2492:32-42.

Barrett R, Besier T, Lloyd D. Individual Muscle Contributionsto the Swing Phase of Gait: An EMG-basedforward DynamicsModelling Approach. Sim Modelling Practice and Theory.2007;15:1146-55.

Naruse K. Biped Walking Pattern by Virtual Muscle Oscillationin Growing Physical Parameter of RobotModel. ICROS SICEinternational Joint Conference 2009. 2009;r:2696 – 2699.

Ghafari A S, Meghdari A, Vossughi G. Estimation of HumanLower Extremity Musculoskeletal ConditionsDuring BackpackLoad Carrying. Trans Biomech Eng. 2009;16:451-62.

Komura T, Nagano A. Evaluation of the Influence of MuscleDeactivation on other Muscles and Joints during Gait Motion.J Biomech. 2004;37:425-36.

Scheys L, Jonkers I, Schutyser F, Pans S, Spaepen A, SuetensP. Image based Methods to Generate Subject-specific MusculoskeletalModels for Gait Analysis. Int Congress Series.2005;1281:62-7.

Lloyd D, Besier T. An EMG-driven musculoskeletal model toEstimate Muscle Forces and Knee Joint Moments in Vivo. JBiomech. 2003;36:765-76.

Hill AV. The Heat of Shortening and the Dynamic Constantsof Muscle. Proceedings of The RoyalSociety Biological Science.1938;136:136-95.

Lee L F, Krovi V N. Musculoskeletal Simulation-based ParametricStudy of Optimal Gait Frequency in Biped Locomotion. IEEEExplore. 2008.

Hoy M, Zajac F, Gordon M. A Muskuloskeletal Model of theHuman Lower Extremity: The Effect of Muscle, Tendon, andMoment Arm on the Moment-angle Relationship of MusculotendonActuators at the Hip, Knee, and Ankle. J Biomech.1990;23:157-69.

Shin D, Kim J, Koike Y. A Myokinetic Arm Model for EstimatingJoint Torque and Stiffness From EMGSignals During MaintainedPosture. J Neurophysiol. 2009;101:387-401.

Anderson G, Liu L, Wright A. Trajectory Planning and Controlfor a Human-like Robot Leg with Coupledneural-oscillators. In:In Proceedings of the 7th Mechatronics Forum: InternationalConference andMechatronics Educaiton Workshop; 2000.

Endo K, Herr H. A model of Muscle Tendon Function in HumanWalking. In: 2009 IEEE Int Conf on Robotics and Automation;2009.

Endo K, Herr H. Human Walking Model Predicts Joints Mechanics,Electromyografy and MechanicalEconomy. In: The 2009IEEE/RSJ Inter Conference on Intelligent Robots and Systems;2009

Delp S L, Anderson F C, Arnold A S, Loan P, Habib A, JohnC T, et al. Open Source Software to Create and Analyze DynamicSimulations of Movement. IEEE Trans Biomed Eng.2007;54:1940-51.

Delp S. An Interactive Graphics Based Model of the LowerExtremity to Study Orthopaedic SurgicalProcedures. IEEE TransBiomed Eng. 1990;37:757

Baldassarri S, Arbeloa S. Sistema MOBiL: DeformacionesMusculares Durante la Locomoción. Actas del XV CongresoEspañol de Informática Gráfica CEIG 2005. 2005;15:159-68.

Yamaguchi Y, Shimizu H, Taga G, Miyake Y. Generation and Coordinationof Bipedal Locomotion Through Global Entrainment.In: Proceedings of International Symposium on AutonomousDecentralizedSystems; 1993.

Arnold E, Ward S, Lieber R, Delp S. A Model of the LowerLimb for Analysis of Human Movement. Ann Biomed Eng.2010;38:269-79..

Scheys L, Campenhout A V, Spaepen A, Suetens P, Jonkers I.Personalized MR-based Musculoskeletal Models Compared toRescaled Generic Models in the Presence of Increased FemoralAnteversion: Effecton Hip Moment Arm Lengths. Gait Posture.2008;28:358-65.

Donald P D, Shurr L, Jane C, Golden C, Meier K, NielsenC D. Comparison of Energy Cost and Gait Efficiency duringAmbulation in Below-knee Amputees Using Different ProstheticFeet. Iowa Orthop J.1988;8:95-100.

Dong F, Clapworthy G, Krokos M, Yao J. An Anatomy basedApproach to Human Muscle Modeling and Deformation. IEEETrans Vis Comput Graph. 2002;8:154-70.

Goujon H, Bonnet X, Sautreuil P, Maurrisset M, Darmon L,Fode P. A Functional Evaluation of Prosthetic Foot Kinematicsduring Lower-limb Amputee Gait. Prosthetics and OrthoticsInternational. 2006;30(2):213-23.

Wright A, Yoder D, Andriacchi T, Costa J. Characterization ofGait Parameters in Patients with Charcot-marie-tooth Disease.Neurol India. 2000;48:49-55.

Taga G. A Model of the Neuromusculo Skeletal System for AnticipatoryAdjustment of Human Locomotion during ObstacleAvoidance.Biol Cybern. 1998;78:9-17.

Taga G. A Model of the Neuro-musculo-skeletal System forHuman Locomotion Emergence of Basic Gait. Biol Cybern.1995;73:97-111.

Hooper S. Central Patterns Generators. Current Biology.2000;10(5):176-7.

Buchli J, Ijspeert AJ. Distributed Central Pattern Generator Modelfor Robotics Application based on Phase Sensitivity Analysis.In: The First International Workshop on Biologically InspiredApproaches toAdvanced Information Technology; 2003.

Full R, Abbas J. Biomechanics and Neural Control of Postureand Movement. J Biomech Eng. 2000.

Corazza S, Gambaretto E, M¨undermann L, Andriacchi TP.Automatic Generation of a Subject SpecificModel for AccurateMarkerless Motion Capture and Biomechanical Applications.IEEE Trans Biomed Eng. 2010;57:806-12.

Zielinska T. Coupled Oscillators Utilised as Gait Rhythm Generatorsof a Two Legged Walking Machine. Biological Cybernetics.1996;74:256-73.

Pandy M. Computer Modeling and Simulation of Human Movement.Annu Rev Biomed Eng. 2001;3:245-73.

Hatze H. Towards a Comprehensive Large-scale ComputerModel of the Human Neuromusculoskeletal System. TheoreticalIssues in Ergonomics Science. 2005;6:239-50.

Ivanov P, Stanleya E, Ashkenazya Y, Hausdor J. A StochasticModel of Human Gait Dynamics. Physica. 2002;316:662-70

Cómo citar
Cifuentes, C., Martínez, F., & Romero, E. (2010). Análisis teórico y computacional de la marcha normal y patológica: una revisión. Revista Med, 18(2), 182.196. https://doi.org/10.18359/rmed.1311
Publicado
2010-11-30
Sección
Artículos

Métricas

QR Code