Diterpenos de Núcleo Kaurano como Inhibidores de la PTR1 de Leishmania: un Estudio In-Silico

  • Luisa Orduz Díaz Universidad Militar Nueva Granada,
  • Freddy Bernal Universidad Militar Nueva Granada,
  • Ericsson Coy Barrera Universidad Militar Nueva Granada,
Palabras clave: Diterpenos, kaurano, in-silico, docking molecular,

Resumen

La pteridina reductasa-1 (PTR1) ha sido descubierta como la responsable de la reducción de la susceptibilidad a antifolatos (e.g., metotrexato) de parásitos tripanosómicos, lo cual la ha convertido en un objetivo quimioterapeútico. Por esta razón, trece diterpenos conocidos, de núcleo kaurano, fueron evaluados in silico contra la PTR1, mediante docking molecular y modelamiento farmacofórico. El docking molecular mostró claras interacciones polares con algunos residuos del sitio activo de la PTR1, que dependieron principalmente de la presencia de un grupo carboxilo en C19. Estos resultados fueron corroborados por el mapeo de interacciones residuales, indicando que los ácidos kauren-19-oicos poseen las características estructurales importantes para una inhibición de la PTR1, lo cual es un excelente punto de partida para futuros estudios de optimización estructural de este tipo de compuestos.

Descargas

Los datos de descargas todavía no están disponibles.

Lenguajes:

es

Agencias de apoyo:

Universidad Militar Nueva Granada

Referencias bibliográficas

Arboleda M, Jaramillo L, Ortiz D, Díaz A. 2013. Leishmaniasis cutáne y herpes zoster multidermatómico. Revista chilena de infectología, 30:680-682.

Becke AD. 1993. Density-Functional Thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98:5648-5652.

Cavazzuti A, Paglietti G, Hunter WN, Gamarro F, Piras S, Loriga M, Allecca S, Corona P, McLuskey K, Tulloch L, Gibellini F, Ferrari S, Costi MP. 2008. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proceedings of the National Academy of Sciences USA. 105:1448-1453.

Dewar M, Zoebisch E, Healy E, Stewart J. 1985. AM1: a new general purpose quantum mechanical molecular model. Journal of American Chemical Society, 107:3902-3909.

Jebran AF, Schleicher U, Steiner R, Wentker P, Mahfuz F, Stahl HC, Amin FM, Bogdan C, Stahl KW. 2014. Rapid Healing of Cutaneous Leishmaniasis by High-Frequency Electrocauterization and Hydrogel Wound Care with or without DAC N-055: A Randomized Controlled Phase IIa Trial in Kabul. PLOS Neglected Tropical Diseases, 8:e2694.

Jullian V, Bonduelle C, Valentin A, Acebey L, Duigou AG, Prévost MF, Sauvain M. 2005. New clerodane diterpenoids from Laetia procera (Poepp.) Eichler (Flacourtiaceae), with antiplasmodial and antileishmanial activities. Bioorganic & Medicinal Chemistry Letters, 15:5065-5070.

Kennedy ML, Llanos GG, Castanys S, Gamarro F, Bazzocchi IL, Jiménez IA. 2011. Terpenoids from Maytenus species and assessment of their reversal activity against a multidrug-resistant Leishmania tropical line. Chemistry & Biodiversity, 8:2291-2298.

Kheirandish F, Bandehpour M, Haghighi A, Mahboudi F, Mohebali M, Kazemi B. 2012. Inhibition of Leishmania major PTR1 Gene Expression by Antisense in Escherichia coli. Iranian Journal of Public Health. 41:65-71.

Loría-Cervera EN, Andrade-Narváez FJ. 2014. Animal models for the study of leishmaniasis immunology. Revista do Instituto de Medicina Tropical de São Paulo, 56:1-11.

Nare B, Hardy LW, Beverley SM. 1997. The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. The Journal of Biological Chemistry, 272:13883-13891.

Ong HB, Sienkiewicz N, Wyllie S, Fairlamb AH. 2011. Dissecting the metabolic roles of pteridine reductase 1 in Trypanosoma brucei and Leishmania major. The Journal of Biological Chemistry, 286:10429-10438.

Pham TT, Loiseau PM, Barratt G. 2013. Strategies for the design of orally bioavailable antileishmanial treatments. International Journal of Pharmaceutics, 454:539-52.

Reithinger R, Dujardin JC, Louzir H, Pirmez C, Alexander B, Brooker S. 2007. Cutaneous leishmaniasis. The Lancet Infectious Diseases, 7:581-596.

Santos AO, Izumi E, Ueda-Nakamura T, Dias-Filho BP, Veiga-Júnior VF, Nakamura CV. 2013. Antileishmanial activity of diterpene acids in copaiba oil. Memórias do Instituto Oswaldo Cruz, 108:59-64.

Seeliger D, de Groot BL. 2010. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24:417-422.

Setzer WN. 2013. Trypanosomatid disease drug discovery and target identification. Future Medicinal Chemistry, 5:1703-1704.

Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK. 2014. Natural product based leads to fight against leishmaniasis. Bioorganic & Medicinal Chemistry. 22:18-45.

Sundar S, Rai M. 2002. Advances in the treatment of leishmaniasis. Current Opinion in Infectious Diseases, 15:593-598.

Cómo citar
Orduz Díaz, L., Bernal, F., & Coy Barrera, E. (2013). Diterpenos de Núcleo Kaurano como Inhibidores de la PTR1 de Leishmania: un Estudio In-Silico. Revista Facultad De Ciencias Básicas, 9(1), 142–153. https://doi.org/10.18359/rfcb.362
Publicado
2013-06-10
Sección
Artículos

Métricas

QR Code