El Concepto de Ecología Visual

  • Mario Oswaldo Tovar Bohórquez Universidad Militar Nueva Granada
  • Sheryll Yohana Corchuelo Chavarro Universidad Militar Nueva Granada
  • Diana Carolina Castañeda Cortes Universidad Militar Nueva Granada
  • Hernán Hurtado Giraldo Universidad Militar Nueva Granada
Palabras clave: sistema visual, ecología, histología, interacciones ecológicas, ecología visual.

Resumen

Ecología visual es un concepto introducido recientemente en los estudios sobre sistema visual y ecología. Los primeros trabajos hacen referencia acerca de la importancia del sistema ocular en las interacciones de los vertebrados con el ambiente. Investigaciones posteriores se enfocan en la importancia de la relación estructura-ambiente-comportamiento, una interpretación novedosa que empezó a tomar importancia. Actualmente existen trabajos sobre la ecología visual en cnidarios, crustáceos, insectos, peces, lagartos, reptiles, aves, roedores, cetáceos, marsupiales, primates, y otros grupos. A pesar que se han publicado varios artículos  cerca de este tema, muchos autores no definen el concepto como tal ni citan alguna existente, por lo tanto el objetivo de esta revisión es contextualizar la definición de ecología visual, teniendo en cuenta el punto de vista de diferentes autores y empleando varios aspectos que ayuden a entender dicho concepto. Aunque la ecología visual es un tema de investigación bastante amplio, la mayor cantidad de trabajos publicados se refieren a la interacción del sistema visual con el ambiente, considerando las amplitudes espectrales y la capacidad de absorción de diferentes longitudes de onda por parte de los pigmentos presentes en las neuronas visuales utilizando la espectrofotometría como técnica fundamental. En conclusión, la ecología visual, desde su sentido más básico y práctico, puede ser definida como la relación de los individuos con el ambiente que los rodea a través del sistema visual, con el fin de satisfacer las necesidades alimenticias, reproductivas y de supervivencia. Actualmente, la ecología visual considera muchos aspectos, lo cual hace de este concepto un nuevo campo de estudio en biología básica, fisiología, histología, ecología, etología, entre otros, con gran diversidad de especies que habitan en ambientes muy variados.

Descargas

Los datos de descargas todavía no están disponibles.

Lenguajes:

ES

Referencias bibliográficas

Allen G. 1879. The colour sense: Its origin and development. Londres: Trubner & Co. En: Osorio D, Vorobyev M. 2008. A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48(20): 2042-2051.

Ali MA. Retinomotor responses p. 315-355. En: Ali MA (Ed). 1975. Vision in Fishes. Plenum Press, New York, 836 p.

Barrett JC, Grossman GD, Rosenfeld J. 1992. Turbidity-induced changes in reactive distance of rainbow trout. Transactions of the American Fisheries Society, 121: 437-443.

Bennett ATD, Cuthill IC, Norris KJ. 1994. Sexual selection and the mismeasure of color. American Naturalist, 144: 848-860.

Bowmaker JK. 1991. Evolution of photoreceptors and visual pigments. p. 63-81. En: Thompson E. 1995. Colour Vision: A study in Cognotive Science and the Philosophy of Perception. Routledge Press, London, 168-212 p.

Bowmaker JK, Govardovskii VI, Shukolyukov SA, Zueva LV, Hunt DM, Sideleva VG, Smirnova OG. 1994. Visual pigments and the photic environment: the cottoid fish of Lake Baikal. Vision Research, 34: 591-605.

Cohen JL. 1990. In the visual system of fish. Douglas B, Djamgoz MB (Eds). Springer Verlag, Nueva York, 465 p. En: Ostrander G. 2000. The Laboratory Fish. Academic Press, Estados Unidos, 678 p.

Collin SP, Marshall JN. 2003. Sensory Processing in Aquatic Environments. Springer-Verlag, Nueva York, Estados Unidos, p. 139-170.

Collin SP, Partridge JC. 1996. Fish Vision: Retinal specializations in the eyes of deep-sea teleost. Journal Fish Biology, 49: 157-174.

Collin SP, Pettigrew JD. 1988a. Retinal topography in reef teleosts I. Some species with well-developed areae but poorly-developed streaks. Brain Behaviour Evolution, 31: 269-282.

Collin SP, Pettigrew JD. 1988b. Retinal topography in reef teleosts. II. Some species with prominent horizontal streaks and high-density areae. Brain Behaviour Evolution, 31: 283–295.

Collin SP, Shand J. 2003. Retinal Sampling and the Visual Field in Fishes, p. 139-170. En: Collin SP, Marshall JN. Sensory Processing in Aquatic Environments. Springer, 435 p.

Corti M, Crosetti D. 1996. Geographic variation in the grey mullet: a geometric morphometric analysis using partial warpscores. Journal Fish Biology, 48: 255-269.

Cott HB. 1940. Adaptive Coloration in Animals. Londres, Oxford Press, p. 508. En: Marshall NJ (Ed). 2000. The Visual Ecology of Reef Fish Colours. p. 83-120.

Cronin TW. 2005. The Visual Ecology of PredatorPrey Interactions. p. 105-138. En: Barbosa P, Castellanos I (Eds.). Ecology of predator-prey interactions. Oxford University Press. New York, 3924 p.

Cummings ME, Jordao JM, Cronin TW, Oliveira R. 2007. Visual ecology of the fiddler crab, Uca tangeri: effects of sex,viewer and background on conspicuousness. Animal behaviour, 75: 175-188.

Dacey DM. 2000. Parallel pathways for spectral coding in primate retina. Annual Review of Neuroscience, 23: 743-775. En: Dominy NJ, Lucas PW. 2004. Significance of Color, Calories, and Climate to the Visual Ecology of Catarrhines. American Journal of Primatology, 62:189–207.

David SV, Vinje WE, Gallant JL. 2004. Natural stimulus statistics alter the receptive field structure of V1 neurons. The Journal of Neuroscience, 24(31): 6991-7006.

Devadas M, Sugawara K, Shimada Y, Sugitane K, Wu Liu Z, Matsukawa T, Kato S. 2000. Slow recovery of retinal ganglion cell’s soma size during regeneration. Neuroscience Research, 37: 289-297.

Dodson SI, Allen TF, Carpenter SR, Ives AR, Jeanne RL, Kitchell JF, Langston NE, Turner MG. 1998. Ecology. Oxford University Press, Estados Unidos, p. 1–24.

Douglas DJT, Evans DM, Redpath SM. 2008. Selection of foraging habitat and nestling diet by Meadow Pipits Anthus pratensis breeding on intensively grazed moorland. Bird Study, 55: 290-296.

Douglas RH, Harper RD, Case JF. 1998. The pupil response of a teleost fish, Porichthys notatus: description and comparison to other species. Vision Research, 38: 2697-2710.

Eckert MP, Zeil J. 2001. Towards an ecology of motion vision. p. 333–369. En: Zanker JM, Zeil J (Eds.). Motion vision: computational, neural and ecological constraints. Springer, New York, 397 p.

Endler JA. 1988. Frequency-dependent predation, crypsis and aposematic coloration. Philosophical transactions of the Royal Society of London B, 319: 505-523.

Endler JA, Basolo AL. 1998. Sensory ecology, receiver biases and sexual selection. Trends in Ecology and Evolution, 13: 415–420.

Evans B. 2004. A fish’s eyes view of habitat change. p. 1-30. En: Von Der Emde G, Mordans J, Kapoor BG (Eds.). The Senses of Fish, adaptations for the receptions of natural stimuli. Kluwer Academic publishers. London, 377 p.

FAO. Manual on the production and use of live food for aquaculture. Fisheries Technical Paper. Lavens P, Sorgeloos P. (Eds.). University of Ghent, Belgica, 295 p.

Fernald RD. 2000. Sensory systems, p. 225-233, 451-462. En: Ostrander G (Ed.). The Laboratory Fish. Academic Press, Estados Unidos, 678 p.

Fernald RD. 2008. Evolution of Vertebrate Eyes. Elsevier Inc. Standford University, Stanford, p. 9-21.

Fleishman LJ, Bowman M, Saunders D, Miller WE, Rury MJ, Loew ER. 1997. The visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. Journal Comparative Physiology A, 181: 446-460.

Frohlich E, Negishi K, Wagner HJ. 1995. Patterns of Rod Proliferation in Deep-Sea Fosh Retinae. Vision Research, 35: 1799-1811.

Garutti V. 2003. Piscicultura Ecológica. UNESP (Eds). Brasil. 321 p.

Gogoi A, Buragohain AK, Choudhury A, Ahmed GA. 2009. Laboratory measurements of light scattering by tropical fresh water diatoms. Journal of Quantitative Spectroscopy & Radiative Transfer, 110: 1566–1578.

Gratzek JB, Matthews JR. 1992. Aquarology: The science of fish health management. Tetra Press, p.161-165.

Guilford T. 1988. How do warning colors work?- conspicuousness may reduce recognition errors in experienced predators. Animal Behaviour, 34: 286-288. En: Osorio D, Miklosi A, Gonda Z. 2001. Visual ecology and perception of coloration patterns by dosmetic chicks. Evolutionary Ecology, 13: 673-689.

Guilford T, Dawkins MS. 1991. Receiver psychology and the evolution of animal signals. Animal Behaviour, 42: 1-14.

Hart N. 2001. The Visual Ecology of Avian Photoreceptors. Progress in Retinal and Eye Research, 20(5): 675-703.

Hernández PR, Stoner KE, Osorio D. 2004. Effect of polymorphic colour vision for fruit detection in the spider monkey Ateles geoffroyi, and its implications for the maintenance of polymorphic colour vision in platyrrhine monkeys. The Journal of Experimental Biology, 207: 2465-2470.

Hisatomi O, Yamamoto S, Kobayashi Y, Honkawa H, Takahashi Y, Tokunaga F. 2002. Evolution of Visual Pigments and Related Molecules. Journal of Photoscience, 9(2): 41-43.

Hughes A. 1977. The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. p. 613-756. En: Crescitelli F (Ed.). The visual systems of vertebrates. Handbook of sensory physiology. VIII/5. Berlin: Springer. En: Virsu V, Hari R. 1996. Cortical Magnification, Scale Invariance and Visual Ecology. Vision Res, 36(18): 2971-2977.

Johnsen S. 2005. Visual ecology on the high seas. En: Weissburg MJ, Browman HI. Sensor biology: linking the internal and external ecologies of marine organisms. Marine Ecology Progress Series, 287: 263-307.

Kaas JH. 1988. Development of cortical sensory maps. p. 101-113. En: Rakic P, Singer W (Eds.). Neurobiology of neocortex. Chichester: John Wiley y Sons. En: Virsu V, Hari R. 1996. Cortical Magnification, Scale Invariance and Visual Ecology. Vision Research, 36(18): 2971-2977.

Kitamoto J, Sakamoto K, Ozaki K, Mishina Y y Arikawa K. 1998. Two visual pigments in a single photoreceptor cell: Identification and histological localization of three mRNAS encoding visual pigment opsins in the retina of the butterfly Papilio xuthus. The Journal of Experimental Biology, 201: 1255–1261.

Kobayashi H. 1962. A comparative study on electroretinogram in fish, with special reference to ecological aspects. Contribution from the Shimonoseki College of Fisheries, 353: 407-537. En: Fleishman LJ, Bowman M, Saunders D, Miller WE, Rury MJ, Loew ER. 1997. The visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. Journal Comparative Physiology A, 181: 446-460.

Koenderink JJ, van Doorn AJ. 1987. Facts on optic flow. Biology Cybernet, 56: 247-254.

Körding KP, Kayser C, Einhäuser W, König P. 2004. How are complex cell properties adapted to the statistics of natural stimuli?. Journal Neurophysiolgy, 91: 206-212.

Krebs CJ. 2009. Ecology: The experimental Analysis of Distribution and Abundance. Sixth Edition. Pearson, Estados Unidos, p. 4-30.

Kröger RHH, Fernald RD. 1994. Regulation of eye growth in the African cichlid fish Haplochromis burtoni. Vision Research, 34(14): 1807-1814.

Land MF, Nilsson DE. 2002. Animal eyes. Oxford University Press, Oxford, 221 p.

Latruffe C, McGregor PK, Oliveira RF. 1999. Visual signaling and sexual selection in male fiddler crabs, Uca tangeri. Marine Ecology Progress Series, 189: 233-240.

Levine JS, MacNichol EF. 1979. Visual pigments in teleost fishes: effect of habitat, mocrohabitat and behavior on visual system evolution. Sense Process, 3: 95-131.

Levine JS, MacNichol EF. 1982. Color vision in fishes. Scientific American, 246: 140-149. En: Fleishman LJ, Bowman M, Saunders D, Miller WE, Rury MJ, Loew ER. 1997. The visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. Journal Comparative Physiology A, 181: 446-460.

Lindstrom L, Alatalo RV, Mappes J, Riipi M, Vertainen L. 1999. Can aposematic signals evolve by gradual change?. Nature, 397: 249-251.

Lythgoe JN. 1972. The adaptation of visual pigments to their photic environment. En: Handbook of Sensory Physiology. Volume VII/I. Photochemistry of Vision (de. Daartnall H.J.A). En: Thompson E. 1995. Colour Vision: A study in Cognotive Science and the Philosophy of Perception. Routledge Pres,. Londres, p. 168-212.

Lythgoe JN. 1979. The ecology of vision. Oxford University, Press Oxford. En: Fleishman LJ, Bowman M, Saunders D, Miller WE, Rury MJ, Loew ER. 1997. The visual ecology of Puerto Rican anoline lizards: habitat light and spectral sensitivity. Journal Comparative Physiology A, 181: 446-460.

Lythgoe JN, Munz WRA, Partridge JC, Shand J, Williams D McB. 1994. The ecology of the visual pigments of snappers (Lut-janidae) on the Great Barrier Reef. Journal Comparative Physiology A, 174: 461-467.

Mancera-Rodríguez NJ y Álvarez-León R. 2008. Comercio de peces ornamentales en Colombia. Acta biologica Colombiana, 13: 23-52.

Marples NM, Kelly DJ. 2001. Neophobia and dietary conservatism: two distinct processes?. Evolutionary Ecology, 13: 641-653.

Marples NM, Roper TJ, Harper DGC. 1998. Responses of wild birds to novel prey: evidence of dietary conservatism. Oikos, 83: 161-165.

Marshall NJ. 2000. The Visual Ecology of Reef Fish Colours. p. 83-120. En: Espmark Y, Amundsen T, Rosenqvist G (Eds.). Animal Signals. Signalling and Signal Desing in Animal Communucation. Tapir Academic Press, Trondheim, Noruega, 496 p.

Meager JJ, Solbakken T, Utne-Palm AC, Oen T. 2005. Effects of turbidity on the reactive distance, search time, and foraging success of juvenile Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 62: 1978-1984. 62. Mojica JIC, Castellanos C, Usma S, Álvarez R (Eds). 2002. Libro rojo de las especies de peces dulceacuicolas de Colombia. La serie de libros rojos de especies amenazadas de Colombia. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Ministerio del Medio Ambiente. Bogota, Colombia, p. 29-34.

Mommsen TP. 2001. Paradigms of the growth in fish. Comparative Physiology and Biochemistry,129: 207-219.

Murphy CJ, Howland HC. 1991. The functional significance of crescent-shaped pupils and multiple pupillary apertures. Journal of Experimental Zoology, 5: Suppl. 22-28.

Munz FW. 1971. Vision: Visual Pigments. p. 1-3. En: Hoar WS, Randall DJ. Fish Physiology. Academic Press, Nueva York, 27 p.

Nakamura K, Yamaguchi H. 1991. Distribution of scleral ossicles in teleost fishes. Memoirs of Faculty of Fisheries. Kagoshima University. Kagoshima. Japón. 40: 1-20.

Odum EP. 1997. Ecology: A bridge Between Science and Society. Third edition. Sennar Associates. Estados Unidos, p. 30-40, 212-243.

Osorio D. 1996. Symmetry detection by categorization of spatial phase, a model. Proeding Royal Society London B, 263: 105-110.

Osorio D, Miklosi A, Gonda Z. 2001. Visual ecology and perception of coloration patterns by dosmetic chicks. Evolutionary Ecology, 13: 673-689.

Osorio D, Srinivasan MV. 1991 Camouflage by edge enhancement in animal coloration patterns and its implications for visual mechanisms. Proeding Royal Society London B, 244: 81-85.

Osorio D, Vorobyev M. 2008. A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48(20): 2042-2051.

Ostrander G. 2000. The Laboratory Fish. Academic Press, Estados Unidos, 678 p.

Paul LJ. 1986. New Zealand Fishes: an identification guide. Reed Methuen. Auckland, Nueva Zelanda, 179 p.

Pankhurst NW. 1987. Intra and interspecific changes in retina morphology among mesopelagic and demersal teleost from the slope of New Zaeland. Environmental biology of fish, 4: 269-20.

Pankhurst NW. 1989. The relationship of ocular morphology to feeding modes and activity periods in shallow marine teleost from New Zealand. Environmental biology of fish, 26: 201-211.

Partridge JC, Cummings ME. 1999. Adaptations of visual pigments to the aquatic environment. p. 251-284. En: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Valerga S (Eds.). Adaptive Mechanisms in the Ecology of Vision. Dordrecht, 668 p.

Pekcan-Hekim Z. 2007. Effects of turbidity on feeding and distribution of fish. Ph.D. Tesis. Programa. Universidad de Helsinki, Helsinki, Finlandia, 30 p.

Prince JH. 1956 Comparative Anatomy of eye. Charles Thomas. Springfield. Illinois. 355 p.

Pumphrey RJ. 1961. Concerning vision. En: the cell and organism. Ramsay JA, Wigglesworth VB (Ed.). Cambridge University Press. New York, p. 193-208.

Ross M. 2002. Eye. En: Histology: A Text and Atlas. 4th Edition. Lippincott Williams & Wilkins Published, p. 744-767.

Rutowski RL. 2003. Visual Ecology of Adult Butterflies. p. 9-25. En: Boggs CL, Watt WB, Ehrlich PR. Butterflies: Ecology and Evolution Taking Flight. The University of Chicago Press. Chicago, 739 p.

Saunders AJ, Montgomery JC. 1985. Field and laboratory studies of the feeding behaviour of the piper Hyporhmphus ihi whit reference to the role of the lateral line in feeding. Proceedings of the Royal Society London B, 224: 209-221. En: Pankhurst NW. 1989. The relationship of ocular morphology to feeding modes activity periods in shallow marine teleosts from New Zealand. Environmental biology of fishes, 26: 201-211.

Sandström A. 1999. Visual ecology of fish – a review with special reference to percids. Fiskeriverket rapport, Öregrund, Suecia, p. 45-80.

Silberglied RE, Aiello A, Windsor DM. 1980. Disruptive Coloration in Butterflies: Lack of Support in Anartia Fatima. Science New Series, 209(4456): 617-619.

Smith AC, Buchanan-Smith HM, Surridge AK, Osorio D, Mundy NI. 2003. The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). The Journal of Experimental Biology, 206: 3159-3165.

Smith CUM. 2008. Biology of Sensory Systems. Second Edition. Wiley-Blackwell Aston University, Birmingham, p. 253-314.

Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annual Review of Neuroscience, 24: 1193-1216.

Sivak JG, Luer CA. 1991. Optical development of the ocular lens of an elasmobranch. Raja elanteria. Vision Research, 31: 373-382.

Sparks DL. 2005. An argument for using ethologically ‘‘natural’’ behaviours as estimates of unobservable sensory processes. Focus on ‘‘Sound localization performance in the cat: The effects of restraining the head’’. Journal Neurophysiology, 93: 1136-1137.

Stuart-F D, Moussalli A, Whiting MJ, 2007. Natural Selection on Social Signals: Signal Efficacy and the Evolution of Chameleon Display Coloration. American Naturalist, 170(6): 916-930.

Swift TJ, Perez-Losada J, Schladow SG, Reuter JE, Jassby AD, Goldman CR. 2006. Water clarity modeling in Lake Tahoe: Linking suspended matter characteristics to Secchi depth. Aquatic Science, 68: 1-15.

Tapas C, Josobanta B. 2002. Retinal cytoarchitecture in some mountain stream teleosts of India. Environmental Biology of Fishes, 63: 435-449.

Thompson E. 1995. Colour Vision: A study in Cognotive Science and the Philosophy of Perception. Routledge Press, London, p. 168-212.

Tovar MO, Contreras LF, Caldas ML, Rodríguez D, Hurtado H. 2008. Comparación Histológica Y Morfométrica Entre el ojo de Eremophilus mutissi (Trichomycteridae) Y El De Oncorhynchus mykiss (Salmonidae). Acta biologica Colombiana, 13: 75-90.

Tovar MO, Obando MJ, Goméz E, Caldas ML y Hurtado H. Histología y morfometría del pez dulceacuícoola Paracheirodon axelrodi (Characiformes: Characidae). Revista de Biología Tropical, en prensa.

Transley K. 1965. Vision in vertebrates. Chapman & Hall. Londres, p. 100-107.

Virsu V, Hari R. 1996. Cortical Magnification, Scale Invariance and Visual Ecology. Vision Research, 36(18): 2971-2977.

Wagner HJ. 1990. Retinal structure of fishes. En: Bowmaker JK, Douglas RH, Djamgoz MBA (Eds.). The Visual System of fish. Chapman & Hall, Springer Velag, Nueva York, Estados Unidos, p. 81-108.

Walls GL. 1942. The vertebrate eye and its adaptive radiation. Hafner, Nueva York, Estados Unidos, 785 p.

Warrant EJ, McIntyre PD. 1992. The trade-off between resolution and sensitivity in compound eyes. En: Pinter R, Nabet B (Ed). Nonlinear Vision. Boca Raton: CRC Press, p. 391-421.

Warrant E, Nilsson DE. 2006. Invertebrate visión. Cambridge University Press. Estados Unidos. 547 p.

Westheimer G. 2008. The Visual System and Its Stimuli. Elsevier Inc. University of California, Berkeley, Estados Unidos, p. 1-7.

Wittenberg J, Haedrich RL. 1974. The choroid rete mirabile of the fish eye II. Distribtion and relation to the pseudobranch and to the swimbladder rete mirabile. The Biological Bulletin, 146: 137-156.

Wittenberg J, Wittenberg BA. 1974. The choroid rete mirabile of the fish eye I. Oxigen Secretion and structure: comparison with the swimbladder rete mirabile. The Biological Bulletin,146: 116-136.

Whitteridge D. 1973. Projection of optic pathways to the visual cortex. p. 247-268. En: Jung R (Ed.). Visual centers in the brain. Handbook of sensory physiology. VII/3B. Berlin Springer. En: Virsu V, Hari R. 1996. Cortical Magnification, Scale Invariance and Visual Ecology. Vision Res, 36(18): 2971-2977.

Zanuy J, Carrillo M. 1990. La reproducción de los teleósteos y su aplicación en la acuicultura. INRA, Paris, p. 1-131.

Zeil J, Nalbach G, Nalbach H-O. 1986. Eyes, eye stalks and the visual world of semi-terrestrial crabs. Journal Comparative Physiolgy A, 159: 801- 811.

Zeil J, Hemmi JM. 2006. The visual ecology of fiddler crabs. Journal Comparative Physiology A, 192: 1-25.

Zhao XC, Yee RW, Norcom E, Burgess H, Avanesov AS, Barrish JP, Malicki J. 2006. The Zebrafish Cornea: Structure and Development. Investigative Ophthalmology & Visual Science, 47(10): 4341-4348.

Cómo citar
Tovar Bohórquez, M. O., Corchuelo Chavarro, S. Y., Castañeda Cortes, D. C., & Hurtado Giraldo, H. (2016). El Concepto de Ecología Visual. Revista Facultad De Ciencias Básicas, 5(1-2), 24–41. https://doi.org/10.18359/rfcb.1948
Publicado
2016-09-01
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code

Algunos artículos similares: