Aproximación al uso de rasgos funcionales y gradientes ambientales para seis especies del arbolado urbano de Bogotá

Palabras clave: Arbolado urbano, Gradientes ambientales, Rasgos funcionales, Temperatura, Urbanización

Resumen

Los procesos de transformación que conlleva la urbanización producen cambios en las condiciones ambientales, influyendo en el desarrollo de las plantas que se encuentran en las ciudades. En este estudio se analizó el comportamiento de los rasgos funcionales foliares y de madera para seis especies del arbolado de Bogotá, además de su relación con gradientes de temperatura y urbanización. Se encontró que las especies se distribuyeron en tres grupos funcionales, entre especies adquisitivas, conservativas y otras con características intermedias en la adquisición de recursos; esto mostró que entre las especies plantadas en la ciudad hay una gama de estrategias para el aprovechamiento de los recursos. Las relaciones entre los rasgos y los gradientes mostraron relaciones negativas en su mayoría, estableciendo que el desarrollo de las hojas se ve afectado por incrementos en la temperatura y la urbanización en la ciudad; en cambio, la madera solo se afectó por aumentos en la temperatura, sugiriendo que los rasgos pueden responder con más fuerza a otro grupo de gradientes, ya que las ciudades son un complejo de interacciones entre diferentes condiciones naturales y de efectos artificiales.

Biografía del autor/a

Jesús Esteban Moreno Barreto, Jardín Botánico de Bogotá José Celestino Mutis

Ingeniero Forestal, Universidad Distrital Francisco José de Caldas. Línea de investigación en coberturas vegetales urbanas, subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Bogotá, Colombia.

Kristian David Rubiano Calderón, Jardín Botánico de Bogotá José Celestino Mutis

Especialista en Sistemas de Información Geográfica, Universidad Distrital Francisco José de Caldas. Ecólogo, Pontificia Universidad Javeriana. Línea de investigación en coberturas vegetales urbanas, subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Bogotá, Colombia.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Jesús Esteban Moreno Barreto, Jardín Botánico de Bogotá José Celestino Mutis

Ingeniero Forestal, Universidad Distrital Francisco José de Caldas. Línea de investigación en coberturas vegetales urbanas, subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Bogotá, Colombia.

Kristian David Rubiano Calderón, Jardín Botánico de Bogotá José Celestino Mutis

Especialista en Sistemas de Información Geográfica, Universidad Distrital Francisco José de Caldas. Ecólogo, Pontificia Universidad Javeriana. Línea de investigación en coberturas vegetales urbanas, subdirección científica, Jardín Botánico de Bogotá José Celestino Mutis, Bogotá, Colombia.

Referencias Bibliográficas

Albert, C. H., Thuiller, W., Yoccoz, N. G., Soudant, A., Boucher, F., Saccone, P., y Lavorel, S. (2010). Intraspecific functional variability: Extent, structure and sour- ces of variation. Journal of Ecology, 98(3), 604-613. https://doi.org/10.1111/j.1365-2745.2010.01651.x

Alcaldía Mayor de Bogotá. (2010). Arbolado urbano de Bogotá: Identificación, descripción y bases para su manejo. Bogotá: Secretaría Distrital de Ambiente y Jardín Botánico José Celestino Mutis.

Aronson, M. F., Nilon, C. H., Lepczyk, C. A., Parker, T. S., Warren, P. S., Cilliers, S. S., ... y Zipperer, W. (2016). Hierarchical filters determine community assembly of urban species pools. Ecology, 97(11), 2952-2963. https://doi.org/10.1002/ecy.1535

Avdan, U., y Jovanoska, G. (2016). Algorithm for automated mapping of Lands Surface Temperature using Landsat 8 satellite data. Journal of sensors, 2016, 1-8. https://doi.org/10.1155/2016/1480307

As-Syakur, A. R., Adnyana, I. W. S., Arthana, I. W., y Nuarsa, I. W. (2012). Enhanced Built-Up and Bareness Index (EBBI) for mapping Built-Up and Bare land in an urban area. Remote sensing, 4(10), 2957-2970. https://doi.org/10.3390/rs4102957

Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., ... y Lewis, S. L. (2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545-562. https://doi.org/10.1111/j.1365-2486.2004.00751.x

Baraloto, C., Timothy, C. E., Poorter, L., Beauchene, J., Bonal, D., Domenach, A., ... y Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology letters, 13(11), 1338-1347. https://doi.org/10.1111/j.1461-0248.2010.01517.x

Barrera-Cataño, J., Contreras-Rodríguez, S., Garzón-Yepes, N., Moreno-Cárdenas, A., y Montoya-Villarreal, S. (2010). Manual para la restauración ecológica de los ecosistemas disturbados del Distrito Capital. Bogotá: Secretaría Distrital de Ambiente y Pontificia Universidad Javeriana, Bogotá.

Breuste, J., Niemelä J., y Snep, R. P. H. (2008). Applying landscape ecological principles in urban environments. Landscape ecology, 23(10), 1193-1142. https://doi.org/10.1007/s10980-008-9273-0

Blundo, C., Malizia, L. R., y González-Espinosa, M. (2015). Distribution of functional traits in subtropical trees across environmental and forest use gradients. Acta Oecologica, 69, 96-104. https://doi.org/10.1016/j.actao.2015.09.008

Calfapietra, C., Peñuelas, J., y Niinemets, Ü. (2015). Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends in Plant Science, 20(2), 72-75. https://doi.org/10.1016/j.tplants.2014.11.001

Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., ... y Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405, 234-242. https://doi.org/10.1038/35012241

Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., y Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4), 351-366. https://doi.org/10.1111/j.1461-0248.2009.01285.x

Chown, S. L., y Duffy, G. A. (2015). Thermal physiology and urbanization: perspectives on exit, entry and transformation rules. Functional Ecology, 29(7), 902- 912. https://doi.org/10.1111/1365-2435.12478

Chuvieco, E. (2016). Fundamentals of satellite remote sensing: An environmental approach. Boca Raton: crc press. https://doi.org/10.1201/b19478

Clarke, L. W., Jenerette, G. D., y Davalia, A. (2013). The luxury of vegetation and the legacy of tree biodiversity in Los Angeles, CA. Landscape and Urban Planning, 116, 48-59.

https://doi.org/10.1016/j.landurbplan.2013.04.006

Corneliessen, J., Lavorel, S., Garnier, E., Díaz, S., Bu- chmann, N., Gurvich, D., ... y Poorter, H. (2003). A handbook of protocols for standardised and easy me- asurements of plant functional traits worldwide. Australian Journal of Botany, 51(4), 335-380. https://doi.org/10.1071/BT02124

Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., ... y van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253-260. https://doi.org/10.1038/387253a0

de Bello, F., Lavorel, S. Díaz, S., Harrington, R., Corneliessen, J. H. C., Bardgett, R. D., ... y Harrison, P. A. (2010). Towards an assessment of multiple ecosystem proces- ses and services via functional traits. Biodiversity and Conservation, 19(10), 2873-2893. https://doi.org/10.1007/s10531-010-9850-9

de la Riva, E. G., Pérez-Ramos, I. M., Navarro-Fernández, C. M., Olmo, M., Marañón, T., y Villar, R. (2014). Rasgos funcionales en el género Quercus: estrategias adquisitivas frente a conservativas en el uso de recursos. Ecosistemas, 23(2), 82-89.

Díaz, S., Lavorel, S., de Bello, F., Quétier, F., Grigulis, K., y Robson, T. M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. pnas, 104(52), 20684-20689. https://doi.org/10.1073/pnas.0704716104

Díaz, S., Kattge, J., Corneliessen, J. H., Wright, I. J., Lavo- rel, S., Dray, S., ... y Garnier, E. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. https://doi.org/10.1038/nature16489

Diégez, U., Barrio, M., Castedo, F., Ruíz, A. D., Álvarez, M. F., Álvarez, J. G., y Rojo, A. (2003). Dendrometría. Madrid: Paraninfo.

Farrell, C., Szota, C., y Arndt, S. K. (2015). Urban Plantings: 'Living Laboratories' for Climate Change Res- ponse. Trends in Plant Science, 20(10), 597-599. https://doi.org/10.1016/j.tplants.2015.08.006

Fontana, V., Kohler, M., Niedrist, G., Bahn, M., Tappeiner, U., y Frenck, G. (2017). Decomposing the land-use specific response of plant functional traits along environmental gradients. Science of the Total Environment, 599, 750-759. https://doi.org/10.1016/j.scitotenv.2017.04.245

Francis, R. A., Lorimer, J., y Raco, M. (2012). Urban ecosystems as ''natural'' homes for biogeographical boundary crossings. Transactions of the Institute of British Geographers 37, 183-190. https://doi.org/10.1111/j.1475-5661.2011.00470.x

Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H., y Gaston, K. J. (2007). Psychological benefits of greenspace increase with biodiversity. Biology letters, 3, 390-394. https://doi.org/10.1098/rsbl.2007.0149

George, K., Ziska, L. H., Bunce, J. A., y Quebedeaux, B. (2007). Elevated atmospheric CO2 concentration and temperature across an urban-rural transect. Atmospheric Environment, 41, 7654-7665. https://doi.org/10.1016/j.atmosenv.2007.08.018

Gielen, B., y Ceulemans, R. (2001). The likely impact of rising atmospheric CO2 on natural and managed Po- pulus: a literature review. Environmental Pollution, 115(3), 335-358. https://doi.org/10.1016/S0269-7491(01)00226-3

Godefroid, S., y Koedam, N. (2007). Urban plant species patterns are highly driven by density and function of built-up areas. Landscape ecology, 22, 1227-1239. https://doi.org/10.1007/s10980-007-9102-x

Gong, C., Yu, S., Joesting, H., y Chen, J. (2013). Determi- ning socioeconomic drivers of urban forest fragmentation with historical remote sensing images. Landscape and Urban Planning, 117, 57-65. https://doi.org/10.1016/j.landurbplan.2013.04.009

Hacke, U., Sperry, J., Pockman, W., Davis, S., y McCulloh, K. (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126(4), 457-461. https://doi.org/10.1007/s004420100628

Hacke, U. G., y Sperry, J. S. (2001). Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4(2), 97-115. https://doi.org/10.1078/1433-8319-00017

Hahs, A. K., y Evans, K. L. (2015). Expanding fundamental ecological knowledge by studying urban ecosystems. Functional ecology, 29, 863-867. https://doi.org/10.1111/1365-2435.12488

Hodgson, J. G., Montserrat-Martí, G., Charles, M., Jones, G., Wilson, P., Shipley, B., ... y Bogard, A. (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of botany, 108(7), 1337- 1345. https://doi.org/10.1093/aob/mcr225

Husson, F., Josse, J., Le, S., y Mazet, J. (2018). Multivariate Exploratory Data Analysis and Data Mining (FactoMi- neR). R package. Recuperado de http://CRAN.R-project.org/package=FactoMineR

Jacobsen, A. L., Ewers, F. W., Brandon-Pratt, R., Paddock, W. A., y Davis, S. D. (2005). Do Xylem Fibers Affect Vessel Cavitation Resistance?. Plant physiology, 139(1), 546-556. https://doi.org/10.1104/pp.104.058404

James, S. A., y Bell, D. T. (2000). Influence of light availa- bility on leaf structure and growth of two Eucalyptus globulus ssp. globulus provenances. Tree Physiology, 20(15), 1007-1018. https://doi.org/10.1093/treephys/20.15.1007

Jenerette, G. D., Clarke, L. W., Avolio, M. L., Pataki, D. E., Gillespie, T. W., Pincetl, S., ... y Alonzo, M. (2016). Climate tolerances and trait choices shape continental patterns of urban tree biodiversity. Global Ecology and Biogeography, 25, 1367-1376. https://doi.org/10.1111/geb.12499

Jiang, Y., Chen, X., Ma, J., Liang, S., Huang, J., Liu, R., y Pan, Y. (2016). Interspecific and Intraspecific Variation in Functional Traits of Subtropical Evergreen and Deciduous Broadleaved Mixed Forests in Karst Topography, Guilin, Southwest China. Tropical Conservation Science, 9(4), 1-9. https://doi.org/10.1177/1940082916680211

Kendal, D., Williams, N. y Williams, K. (2012). A cultivated environment: Exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosystem, 15, 637-652. https://doi.org/10.1007/s11252-011-0215-2

La Sorte, F. A., Aronson, M. F., Williams, N. S., Celesti‐ Grapow, L., Cilliers, S., Clarkson, B. D., ... y Pyšek, P. (2014). Beta diversity of urban floras among European and non‐European cities. Global ecology and biogeography, 23(7), 769-779. https://doi.org/10.1111/geb.12159

Lavorel, S. (2013). Plant functional effects on ecosystem services. Journal of Ecology, 101, 4-8. https://doi.org/10.1111/1365-2745.12031

Lavorel, S., y Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16(5), 545-556. https://doi.org/10.1046/j.1365-2435.2002.00664.x

Lavorel, S., Grigulis, K., Lamarque, P., Colace, M. P., Gar- den, D., Girel, J., ... y Douzet, R. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135-147. https://doi.org/10.1111/j.1365-2745.2010.01753.x

Li, Z., Tang., B., Wu, H., Ren, H., Yan, G., Wan, Z., ... y Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14-37. https://doi.org/10.1016/j.rse.2012.12.008

Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J. A., Paz, H., ... y Bongers, F. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94, 1211- 1216. https://doi.org/10.1890/12-1850.1

Lohbeck, M., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J. A., Poorter, L., y Bongers, F. (2015). Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession. plos one, 10(4), 1-15. https://doi.org/10.1371/journal.pone.0123741

Lososová, Z., Chytrý, M., Tichý, L., Danihelka, J., Fajmon, K., Hájek, O., ... y Řehořek, V. (2012). Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Global Ecology and Biogeography, 21(5), 545-555. https://doi.org/10.1111/j.1466-8238.2011.00704.x

Luck, G. W., Harrington, R., Harrison, P. A., Kremen, C., Berry, P. M., Bugter, R., ... y Zobel, M. (2009). Quantifying the contribution of organisms to the provision of ecosystem services. Bioscience, 59(3), 223-235. https://doi.org/10.1525/bio.2009.59.3.7

Markesteijn, L., Poorter, L., Bongers, F., Paz, H., y Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and sha- de tolerance. New phytologist, 191(2), 480-495. https://doi.org/10.1111/j.1469-8137.2011.03708.x

McDonnell, M. J., y Pickett, S. T. A. (1990). Ecosystem Structure and Function along Urban-Rural Gradients: An Unexploited Opportunity for Ecology. Ecology, 71(4), 1232-1237. https://doi.org/10.2307/1938259

McGill, B. J., Enquist, B. J., Weiher, E., y Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. https://doi.org/10.1016/j.tree.2006.02.002

Montes-Pulido, C. R., Parrado-Rosselli, A., y Álvarez-Dá- vila, E. (2017). Tipos funcionales de plantas como estimadores de carbono en bosque seco del Caribe colombiano. Revista Mexicana de Biodiversidad, 88, 241-249. https://doi.org/10.1016/j.rmb.2017.01.006

Moya, R., y Tomazello, M. (2012). Variation in the wood anatomical structure of Gmelina arborea (Verbenaceae) trees at different ecological conditions in Costa Rica. Revista de Biología Tropical, 56(2), 689-704.

Nabais, C., Hansen, J. K., David-Schwartz, R., Klisz, M., López, R., y Rozenberg, P. (2018). The effect of climate on wood density: What provenance trials tell us?. Fo- rest Ecology and Management, 408, 148-156. https://doi.org/10.1016/j.foreco.2017.10.040

Noss, R. (1990). Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conservation Biology, 4(4), 355- 364. https://doi.org/10.1111/j.1523-1739.1990.tb00309.x

Ordóñez, J. C., Van Bodegom, P. M., Witte, J. P. M., Wri- ght, I. J. Reich, P. B., y Aerts, R. (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18(2), 137-149. https://doi.org/10.1111/j.1466-8238.2008.00441.x

Pataki, D. E., McCarthy, H. R., Gillespie, T., Jenerette, G. D., y Pincetl, S. (2013). A trait based ecology of the Los Angeles urban forest. Ecosphere, 4(6), 1-20. https://doi.org/10.1890/ES13-00017.1

Pandey, A. K., Pandey, M., Mishra, A., Tiwary, S. M., y Tripathi, B. D. (2015). Air pollution tolerance index and anticipated performance index of some plant species for development of urban forest. Urban Forestry and Urban Greening, 14, 866-871. https://doi.org/10.1016/j.ufug.2015.08.001

Prasad, A. D., y Nageeb, A. A. S. (2012). Variation in wood fibre traits among eight populations of Dipterocarpus indicus in Western Ghats, India. Journal of environmental biology, 33(2), 215-221.

Patiño, S., Lloyd, J., Paiva, R., Baker, T. R., Quesada, C. A., Mercado, L. M., ... y Czimczik, C. I. (2009). Branch xylem density variations across the Amazon Basin. Biogeosciences, 6(4), 545-568. https://doi.org/10.5194/bg-6-545-2009

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., ... y Corneliessen, J.H.C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. https://doi.org/10.1071/BT12225

Pickett, S. T. A., y Cadenasso, M. L. (2008). Linking ecological and built components of urban mosaics: an open cycle of ecological design. Journal of Ecology, 96, 8-12.

Pickett, S. T. A., Cadenasso, M. L., Grove, J. M., Boone, C. G., Groffman, P. M., Irvwin, E., ... y Warren, P. (2011). Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, 92, 331-362. https://doi.org/10.1016/j.jenvman.2010.08.022

Pineda-García, F., Paz, H., y Meinzer, F. C. (2012). Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant, Cell and Environment, 36(2), 405-418. https://doi.org/10.1111/j.1365-3040.2012.02582.x

Pohlert, T. (2018). The Pairwise Multiple Comparison of Mean Ranks Package (pmcmr). R package. Recuperado de http://CRAN.R-project.org/package=PMCMR

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Recuperado de https://www.R-project.org/

Rosbakh, S., Römermman, C., y Poschlod, P. (2015). Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alpine Botany, 125, 79-86. https://doi.org/10.1007/s00035-015-0150-6

Ryser, P., y Notz, R. (1996). Competitive ability of three ecologically contrasting grass species at low nutrient supply in relation to their maximal relative growth rate and tissue density. Bulletin of the Geobotanical Institute eth, 62, 3-12.

Salgado-Negret, B., Pérez, F., Markesteijn, L., Jimé- nez-Castillo, M., y Armesto, J. J. (2013). Diverging drought-tolerance strategies explain tree species dis- tribution along a fog-dependent moisture gradient in a temperate rain forest. Oecologia, 173(3), 625-635. https://doi.org/10.1007/s00442-013-2650-7

Salgado-Negret, B. (Ed). (2015). La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.

Schneider, C. A., Rasband, W. S., y Eliceiri, K. W. (2012). nih Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675. https://doi.org/10.1038/nmeth.2089

Schwarz, N., Moretti, M., Bugalho, M. N., Davies, Z. G., Haase, D., Hack, J., ... y Knapp, S. (2017). Understanding biodiversity-ecosystem service relationships in urban areas: A comprehensive literature review. Ecosystem services, 27, 161-171. https://doi.org/10.1016/j.ecoser.2017.08.014

Shipley, B., De Bello, F., Corneliessen, J. H. C., Laliberté, E., Laughlin, D. C., y Reich, P. B. (2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 180(4), 923-931. https://doi.org/10.1007/s00442-016-3549-x

Sigau. (s. f.). Sistema de Información para la Gestión del Arbolado Urbano. Recuperado de http://www.jbb.gov.co/index.php/productos-y-servicios/sigau

Simpson, W. (1993). Specific Gravity, Moisture Content, and Density Relationship for Wood. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. https://doi.org/10.2737/FPL-GTR-76

Sobrino, J. A., y Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, 21, 353-366. https://doi.org/10.1080/014311600210876

Sperry, J., Meinzer, F., y McCulloh, K. (2008). Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment, 31(5), 632-645. https://doi.org/10.1111/j.1365-3040.2007.01765.x

Stanton, K. M., Weeks, S. S., Dana, M. N., y Mickelbart, M. V. (2010). Light exposure and shade effects on growth, flowering, and leaf morphology of Spiraea alba Du Roi and Spiraea tomentosa L. HortScience, 45(12), 1912- 1916. https://doi.org/10.21273/HORTSCI.45.12.1912

Thompson, K., y McCarthy, M. A. (2008). Traits of British alien and native urban plants. Journal of Ecology, 96, 853-859. https://doi.org/10.1111/j.1365-2745.2008.01383.x

United States Geological Survey. (2017). Product guide: Landsat 8 Surface Reflectance Code (larsc) Product. Sioux Falls: Department of Interior.

Valenzuela, S. (2012). Aumenta riesgo de caída de árboles en Bogotá. El Espectador. Recuperado de https://www.elespectador.com/noticias/bogota/aumenta-riesgo-de-caida-de-arboles-bogota-articulo-381804

van der Sande, M. T., Arets, E. J., Peña-Claros, M., de Avi- la, A. L., Roopsind, A., Mazzei, L., ... y Licona, J. C. (2016). Old‐growth Neotropical forests are shifting in species and trait composition. Ecological Monographs, 86(2), 228-243. https://doi.org/10.1890/15-1815.1

Vallet, J., Daniel, H., Beaujouan, V., Rozé, F., y Pavoine, S. (2010). Using biological traits to assess how urbanization filters plant species of small woodlands. Applied Vegetation Science, 13(4), 412-424. https://doi.org/10.1111/j.1654-109X.2010.01087.x

Varis, O. (2007). Megacities, development and water. Water Resources Development, 22(2), 199-225. https://doi.org/10.1080/07900620600648399

Vázquez-Valderrama, M., y Solorza-Bejarano, J. (2017). Agrupación funcional de especies vegetales para la restauración ecológica de ecosistemas de alta montaña, Bogotá, Colombia. Colombia forestal, 21, 5-17. https://doi.org/10.14483/2256201X.11730

Violle, C., Navas, M-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., y Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116, 882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

Williams, N. S., Schwartz, M. W., Vesk, P. A., McCarthy, M. A., Hahs, A. K., Clemants, S. E., ... y McDonnell, M. J. (2009). A conceptual framework for predicting the effects of urban environments on floras. Journal of ecology, 97(1), 4-9. https://doi.org/10.1111/j.1365-2745.2008.01460.x

Williams, N. S., Hahs, A. K., y Vesk, P. A. (2015). Urbanisation, plant traits and the composition of urban floras. Perspectives in Plant Ecology, Evolution and Systematics, 17(1), 78-86. https://doi.org/10.1016/j.ppees.2014.10.002

Wilson, P. J., Thompson, K., y Hodgson, J. G. (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162. https://doi.org/10.1046/j.1469-8137.1999.00427.x

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Ba- ruch, Z., Bongers, F., ... y Flexas, J. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. https://doi.org/10.1038/nature02403

Yang, J., La Sorte, F. A., Pyšek, P., Yan, P., Nowak, D., y McBride, J. (2015). The compositional similarity of urban forests among the world's cities is scale dependent. Global ecology and biogeography, 24(12), 1413-1423. https://doi.org/10.1111/geb.12376

Young, N., Anderson, R., Chignell, S., Vorster, A., Lawran- ce, R., y Evangelista, P. (2017). A survival guide to Landsat preprocessing. Ecology, 78(4), 920-932. https://doi.org/10.1002/ecy.1730

Youngsteadt, E., Dale, A. G., Terando, A. J., Dunn, R. R., y Frank, S. D. (2015). Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Global Change Biology, 21, 97-105. https://doi.org/10.1111/gcb.12692

Zha, Y., Gao, J., y Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from tm imagery. International Journal of Remote Sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987

Cómo citar
Moreno Barreto, J. E., & Rubiano Calderón, K. D. (2020). Aproximación al uso de rasgos funcionales y gradientes ambientales para seis especies del arbolado urbano de Bogotá. Revista Facultad De Ciencias Básicas, 15(2), 17-33. https://doi.org/10.18359/rfcb.3901
Publicado
2020-08-14
Sección
Artículos