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Abstract: Rice (Oryza sativa) is a cereal crop crucial for global food security. However, the limited availability
of micronutrients such aslron (Fe), Manganese (Mn), and Zinc (Zn) in calcareous soils can lead to metabolic
disturbances in the plant, resulting in various anomalies. These disturbances can reduce yields and, in severe
cases, lead to plant death. Plant growth-promoting microorganisms found in the soil rhizosphere can solubilize
these micronutrients. These microorganisms have also been isolated from soils and utilized as biostimulants
and biofertilizers, facilitating their use in optimizing rice cultivation. The objective of this study was to conduct
a literature review on Bacillus, Pseudomonas and Azospirillum and their ability to solubilize Fe, Mn, and Zn rice
cultivation. The study describes the nature, assimilation, and importance of these three micronutrients in soil
and in rice cultivation, as well as the optimization of the microorganisms as ingredients that promote crop
growth and productivity. Furthermore, it discusses their mechanisms, such as the secretion of the siderophores
deoxymugenic acid (oma) and mugenic acid (wa), the production of organic acids like indole-3-acetic acid (1aa) and
abscisic acid, the production of phytohormones(e.g., cytokinins), and a network of metalloproteins that facilitate
soil acidification. These mechanisms enable the solubilization of Fe, Mn, and Zn in the soil associated with the
crop, making them available for absorption by the root system in the form of chelates. To sum up, the addition
of Bacillus, Pseudomonas and Azospirillum facilitates the absorption of micronutrients in the crop and mitigates
the negative effects caused by the constant application of chemical fertilizers, which can accumulate in plan
tissue, soil, and water.
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Optimizacion de la fertilizacion con hierro, manganeso y zinc en arroz
(Oryza sativa L.) a través de bacterias Bacillus, Pseudomonas y
Azospirillum

Resumen: El arroz (Oryza sativa) es un cultivo de cereal crucial para la seguridad alimentaria mundial. Sin em-
bargo, la disponibilidad limitada de micronutrientes como el hierro (Fe), manganeso (Mn) y zinc (Zn) en sue-
los calcareos puede provocar trastornos metabdlicos en la planta, lo que resulta en diversas anomalias. Estos
trastornos pueden reducir los rendimientos y, en casos graves, llevar a la muerte de la planta. Los microorgan-
ismos promotores del crecimiento vegetal presentes en la rizosfera del suelo pueden solubilizar estos micro-
nutrientes. Estos microorganismos también se han aislado de suelos y se han utilizado como biestimulantes y
biofertilizantes, facilitando su uso en la optimizacion del cultivo de arroz. El objetivo de este estudio fue realizar
una revision bibliografica sobre Bacillus, Pseudomonas y Azospirillum y su capacidad para solubilizar Fe, Mny Zn
en el cultivo de arroz. El estudio describe la naturaleza, asimilacion e importancia de estos tres micronutrientes
en el suelo y en el cultivo de arroz, asi como la optimizacién de los microorganismos como ingredientes que
promueven el crecimiento y la productividad de los cultivos. Ademas, se discuten sus mecanismos, como la
secrecion de siderdforos acido deoximugénico (DMA) y acido mugénico (MA), la produccion de acidos organicos
como el acido indol-3-acético (1AA) y el acido abscisico, la produccion de fitohormonas (por ejemplo, citocininas) y
una red de metaloproteinas que facilitan la acidificacion del suelo. Estos mecanismos permiten la solubilizacion
de Fe, Mny Zn en el suelo asociado al cultivo, haciéndolos disponibles para su absorcion por el sistema de raices
en forma de quelatos. En resumen, la adicion de Bacillus, Pseudomonas y Azospirillum facilita la absorcion de
micronutrientes en el cultivo y mitiga los efectos negativos causados por la aplicacion constante de fertilizantes
quimicos, que pueden acumularse en los tejidos de las plantas, el suelo y el agua.

Palabras clave: micronutrientes; hierro; manganeso; zinc; bacterias; biofertilizante; Biestimulante

Otimizagao da fertilizagdo com ferro, manganeés e zinco em arroz (Oryza
sativa L.) através de bactérias Bacillus, Pseudomonas e Azospirillum

Resumo: O arroz (Oryza sativa) é um cultivo de cereal crucial para a seguranca alimentar mundial. No entanto, a
disponibilidade limitada de micronutrientes como ferro (Fe), manganés (Mn) e zinco (Zn) em solos calcarios pode
provocar disturbios metabdlicos na planta, resultando em diversas anomalias. Esses disturbios podem reduzir
os rendimentos e, em casos graves, levar a morte da planta. Os microrganismos promotores do crescimento
vegetal presentes na rizosfera do solo podem solubilizar esses micronutrientes. Esses microrganismos também
tém sido isolados de solos e utilizados como bioestimulantes e biofertilizantes, facilitando seu uso na otimizagdo
do cultivo de arroz. O objetivo deste estudo foi realizar uma revisdo bibliografica sobre Bacillus, Pseudomonas e
Azospirillum e sua capacidade de solubilizar Fe, Mn e Zn no cultivo de arroz. O estudo descreve a natureza, assi-
milagdo e importancia desses trés micronutrientes no solo e no cultivo de arroz, bem como a otimiza¢do dos mi-
crorganismos como ingredientes que promovem o crescimento e a produtividade dos cultivos. Além disso, dis-
cutem-se seus mecanismos, como a secrecdo de sider6foros acido deoximuginico (DMA) e acido muginico (MA), a
producdo de acidos organicos como o acido indol-3-acético (1AA) e 0 acido abscisico, a producdo de fitohormonas
(por exemplo, citocininas) e uma rede de metaloproteinas que facilitam a acidificagdo do solo. Esses mecanismos
permitem a solubilizacdo de Fe, Mn e Zn no solo associado ao cultivo, tornando-os disponiveis para a absorcdo
pelo sistema radicular na forma de quelatos. Em resumo, a adicao de Bacillus, Pseudomonas e Azospirillum facilita
a absor¢do de micronutrientes no cultivo e mitiga os efeitos negativos causados pela aplicacdo constante de
fertilizantes quimicos, que podem se acumular nos tecidos das plantas, no solo e na agua.

Palavras-chave: micronutrientes; ferro; manganés; zinco; bactérias; biofertilizante; bioestimulante
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Introduction

Rice (Oryza sativa L.) is a Poaceae plant that serves
as a staple food for 3.5 billion people globally, with
an average per capita consumption of 54.1 kg per
year. In 2020, the global harvested area of rice
reached 164,192,164 hectares, yielding 46,089 kg
per hectare and totaling 756,743,722 tons in pro-
duction. Asia accounted for 90% of the world’s rice
production, followed by Africa and Latin America
(Nadeem and Faroog, 2019; FAOSTAT, 2020; Shres-
tha et al,, 2020; Keerthana and Lavanya, 2022).
Rice cultivation is historically rooted in tropical
and subtropical regions with humid and temper-
ate climates, typically found between 49° and 50°
latitude North and 35° latitude South, and at eleva-
tions ranging from sea level to 2,500 meters. These
regions typically experience temperatures between
16°C and 32°C and receive approximately 1,020
mm of annual precipitation (Maqueria et al.,2016;
Azziz et al., 2017; Infoagro, n.d.).

Rain-fed and irrigated rice cultivation pre-
dominantly occurs on lands with slopes lower
than 20% and soil pH ranging from 5.5 to 6.6,
consisting of loamy, sandy clay, or clay loam soils.
Conversely, upland rice is grown in soils with a pH
levels lower than 5 or higher than 9 (Chauhan et
al., 2017; Quintero, 2018; Infoagro, 2020). The rice
crop has a life cycle of approximately 150 days,
during which it extracts around 110 kg of N, 34
kg of P,0O;, 156 kg of K,O, 23 kg of MgO, 20 kg of
CaO, 5 kg of S, 2 kg of Fe, 2 kg of Mn, 200 g of Zn,
150 g of Cu, 150 g of B, 250 kg of Si, and 25 kg of
Cl per hectare from the soil (Chauhan et al., 2017;
Quintero, 2018). These macronutrients are crucial
for growth, while micronutrients such as iron (Fe),
manganese (Mn), and zinc (Zn) play essential roles
in protein synthesis, enzymatic activation pro-
cesses, and biochemical activities contributing to
high grain yields (Zayed et al., 2011; Nadeem and
Farooq, 2019; Shrestha et al., 2020).

Biofertilizers  containing microorganisms
such as Bacillus, Pseudomonas, and Azospirillum
have demonstrated benefits in promoting robust
growth, high yields, and grain quality in rice culti-
vation. Their application is increasingly important
for preserving ecosystem functional biodiversity

(Saravanan et al., 2011a; Gontia-Mishra et al., 2017;
Gusain and Sharma, 2019).

These microorganisms possess active mecha-
nisms for solubilizing both macro and micronu-
trients, enhancing the absorption of less mobile
nutrients by plant roots and meeting fertilizer re-
quirements for optimal growth and development
(Saravanan et al., 2011a; Alori and Babalola, 2018;
Dal Cortivo et al., 2018; Dal Cortivo et al., 2020).
Considering the aforementioned, a literature re-
view was conducted to assess whether the utiliza-
tion of microorganisms from the genera Bacillus,
Pseudomons, and Azospirillum contributes to the
solubilization of the micronutrients iron (Fe), man-
ganese (Mn) and zinc (Zn) in rice cultivation.

Methodology

The methodology involved conducting a literature
review on the three microorganisms (Bacillus,
Pseudomonas, and Azospirillum), and their rela-
tion to the fertilization of the micronutrients Fe,
Mn, and Zn in rice cultivation. The review pro-
ceeded in the following sequence:

1. Nature and importance of the three micro-
nutrients for cultivation, focussing their as-
similation. The search engines used were
Sciencedirect (44%), Google Scholar (19%),
SpringerLink (16%), Researchgate.net (9%),
PubMed (6%), Scopus (4%), Books (1%).

2. Examination of the principal microorganisms
responsible for solubilizing the three micronu-
trients. Seventeen articles were reviewed, gath-
ered from Google Scholar (19%), Scopus (19%),
SpringerLink (19%), Researchgate.net (19%),
Google (12%). Frontiers (6); Sciencedirect (6%).

3. Exploration of the characteristics and applica-
tion of key biofertilizers containing solubilizing
microorganisms for the three micronutrients.
This step involved reviewing six literatures
sources, primarily from SpringerLink (50%),
Google Scholar (25%), and Sciencedirect (25%).

4. Analysis of the mechanisms underlying the
solubilization of the three micronutrients
by bacillus, pseudomonas, and azospirillum
microorganisms. A total of 29 reviews were
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conducted, with sources including Scopus
(35%), SpringerLink (17%), Google Scholar
(17%), Books (10%), Sciencedirect (7%), Re-
searchgate.net (7%), Frontiers (4%), PubMed
(3%).

The reviews encompassed articles, books, con-
ference proceedings, and technical documents,
with 93% of the content in English and 7% in
Spanish. Journals included in the review were in-
dexed, with 73% of the reviews focusing on the
past ten years.

Geographical distribution of the reviewed in-
formation included: 51% from Asia (India, Japan,
China, Pakistan, Nepal), 17% from Europe (Ger-
many, Italy, Spain, Switzerland, Brussels, France,
Greece, the United States, Austria, the Czech Re-
public), 21% from the Americas (Usa, Brazil, Mex-
ico, Argentina, Chile, Colombia, Uruguay), 12%
from Africa, and 4% from Oceania (Australia).

Commercially available biofertilizer informa-
tion was sourced from the Spanish Ministry of
Agriculture, Fisheries, and Food of the Govern-
ment (MaPA) and the Colombian Agricultural In-
stitute (ICA).

Results

The Nature, Assimilation, and
Importance of Micronutrients Fe,
Mn, and Zn in Rice Cultivation

Nature

In soil, iron (Fe) exists in various forms, including
hematite (Fe,0,), magnetite (Fe,O,), ferrihydrite
Fe(OH),, goethite (a-FeOOH), and amorphous
iron (Lindsay, 1979; Navarro and Navarro, 2013,
Wu et al,, 2021). Fe,O,remains stable at high pH
levels and persists under oxidizing conditions,
contributing to the investigation of microbial re-
duction of Fe (111) (Li et al., 2018). Additionally,
lepidocrocite and goethite (FeOOH) have been de-
tected in significant quantities in soils, of 16 g kg™,
along with amorphousiron mineralsat 98.5 mgkg™
(Chen, Dixon and Turner, 1980; Liu et al., 2010; He
etal., 2021).
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Manganese (Mn) minerals in soil include py-
rolusite (MnQO,), hausmannite (Mn,0,) birnesite
0-MnO, manganite (Mn,0,.H,0), and rhodo-
chrosite (MnCQ,) (Navarro and Navarro, 2013;
Suda and Makino, 2015; Sinha and Purcell, 2019).
For instance, the addition of hausmannite to pot-
ted rice (at 1200 mg Mn kg of soil) slows down
the decrease in pH, demonstrating its influence on
soil dynamics.

Zinc (Zn) in soil is present as minerals such
as zincite (ZnO), sphalerite (ZnS), smithsonite
(ZnCQO,), zinc sulfate (ZnSO,), and franklinite (Zn-
Fe,0,) (Saravanan, Kumar and Sa, 2011b; Kumar,
Dewangan, Lawate, Bahadur, and Prajapati, 2019).
These forms can exhibit various solubilities and
availabilities, depending on factors such as soil pH,
exchangeable, adsorbed, chelated, or in the form
of secondary clay minerals or primary minerals
(Alloway, 2008; Navarroand Navarro, 2013; Noulas,
Tziouvalekas and Karyotis, 2018). The solubility of
Zn oxides and carbonates in alkaline soils can be
limited. These forms can exhibit various solubili-
ties and availabilities, depending on factors such
as soil pH, are not rock composition, organic mat-
ter content, the texture, temperature, flooding, and
the pH (Pradhan et al., 2021).

Assimilation

The solubility of Fe in soil is influenced by pH,
redox conditions, and soil composition (Lindsay
and Norvell, 1978; Navarro and Navarro, 2013; Lu-
cena and Hernandez-Apaolaza 2017; Sheng et al.
2021). In calcareous soils, approximately 0.5% of
the total Fe is predominantly regulated by Fe (111)
oxides, with soluble oxides such as ferrihydrite in
highly oxidized soils and siderite in reduced soils
playing significant roles (Lucena and Hernandez-
Apaolaza, 2017; Thorat, 2021; Rasheed, 2023). Rice
cultivation occurs in two ecosystems: non-flooded
upland areas (aerobic) and flood-prone lowland
areas (anaerobic), with a pH between 5.5 and 6.5
(Fageria, Wander, and Silva, 2014; Infoagro, 2020).
Given the low availability of Fe in soil, it requires
the use of Strategies 1 and 11 for absorption (Petrik,
Zhai, Haas, and Decristoforo, 2017; Yang, Li and
Chen, 2020; Roskova, Skarohlid, and McGachy,
2022).
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On the other hand, Mn in soil exists in a re-
duced form as Mn?* ( highly soluble and available),
and in oxidized form as Mn* and Mn** (insoluble
and unavailable) for plants (Navarro and Navar-
ro, 2013; Haque et al. 2015; K.B. et al. 2023). The
presence of Mn in soil is influenced by physical,
chemical, and microbiological factors, with pH
and redox conditions being the most significant
(Husson, 2013). In acidic soils with a pH less than
5.5, Mn oxides solubilize and release Mn?* into the
soil solution (Millaleo, Reyes-Diaz, Ivanov, Mora
and Alberdi, 2010; Herndon and Brantley, 2011).

On the contrary, water-soluble and exchange-
able Zn constitute the fraction directly available
for absorption, existing as free ions (Zn®>* and
ZnOH"), soluble organic complexes, and labile Zn
(unstable) (Noulas, Tziouvalekas and Karyotis,
2018; Liu et al., 2020). The dominance of Zn>* or
ZnOH" depends on soil pH, with ZnOH" prevail-
ing at pH above 7.7 and Zn(OH), dominating at pH
above 9.1 (Alloway, 2008; Kaur et al., 2024). It has
been observed that in soils with a pH below 5.8, the
exchangeable Zn fraction increases from organi-
cally complexed Zn (Yang et al., 2010).

Two mechanisms for micronutrient adsorp-
tion by clays and organic matter are apparent: one
occurring in acidic conditions, related to cation
exchange, and the other in alkaline conditions,
involving chemisorption and the formation of
complexes by organic ligands. In lowland or flood
conditions, Zn availability in rice crops decreases
due to the low redox potential, leading to the for-
mation of non-exchangeable Zn complexes bound
to clay particles. Additionally, in alkaline soils,
free Zn precipitates as Zn(OH), raising the pH, or
as ZnS in sodic and calcareous soils (Sharma et al.,
2013; Rose et al., 2013; Kaur et al. 2024).

Zinc absorption by plants occurs through
mechanisms such as mass flow of passive nutrient
transfer, diffusion near the roots (from the rhizo-
sphere to the roots), and root interception within
the soil profile.

It is transported to above-ground plant parts
and intracellularly for metabolic processes (Bashir
et al., 2012; Haroon and Khan, 2022). Key genes
involved in Zn absorption are Oszirl and Osz1p3,
whilst those important to the translocation within

the root include Oszir4, Oszip5, Oszir8 (Bashir
et al., 2012). Zinc translocation from the leaves
to plant organs occurs through the symplast and
apoplast via the xylem, with high levels of the
micronutrient detected in the phloem (Liao et al.
2023Marschner, 1995).

The Importance

Iron, Magnesium and Zinc play pivotal roles in the
growth, development, and yield of rice. However,
50% of rice soils are deficient in Zn, and 30% are
deficient in Fe (Ullah et al., 2017; Nadeem and Fa-
rooq, 2019). Iron plays a role in electron transport,
redox systems, sulfur and nitrogen metabolism,
DNA synthesis, hormone production, coenzymes,
chlorophyll biosynthesis, and heme synthesis by
ferrochelatase (Zhang et al., 2012; Wang et al,,
2017; Ning et al., 2023). In upland areas with alka-
line and calcareous soils, Fe levels below 50 mg kg™
an cause nutritional disorders, and reduced pro-
ductivity (Marschner, 2011; Rice Knowledge
Bank, s.f.). In alkaline soils with high bicarbon-
ate concentrations, the solubility and absorption
of Fe, Mn and Zn decrease, especially in Strategy
I plants, which rely on inducible ferric reductases
for the cellular transport of Fe (Lucena et al., 2003;
Zhang et al., 2019; Castilla and Tirado, 2019). In
New Delhi, Kumar, Dinesh, Singh and Rishi (2015)
found that foliar pulverization of 2.0% Fe sulfate in
rice crops increased the yield (5.24 t ha' compared
to the control’s 4.32 t ha'). In Nigeria, Sakariyawo,
Ovyedeji and Soretire (2020) obtained a yield of
196.40 g per plot in rice in upland areas with suf-
ficient Fe (8.00 mg kg™'), whereas in plants deficient
in Fe (3.05mg kg"), the yield was 10,00 g per plot.
Mn is an enzymatic activator in the Krebs cycle
and in urea (arginase). It is involved in chlorophyll
synthesis, is essential in the Mg-protein complex
which transports electrons from the water to the
photosystem 11, and is part of Mn-sop (Manganese
superoxide dismutase)- an isoenzyme present in
mitochondria and peroxisomes and, less frequent-
ly, in chloroplasts (Marschner, 2011; Grundmeier
and Dau, 2012). The appropriate Mn level ranges
from 30 to 600 mg kg; levels below 20 mg kg*
cause interveinal chlorosis, shor-t leaves, and atro-
phy (Rice Knowledge Bank, s.f; Ullah et al., 2017).
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This Mn deficiency is rarely seen in flooded rice.
However, it has been observed in direct-seeded
aerobic rice systems due to the oxidation of Mn?,
a process with leads to the precipitation of Mn*
and Mn** oxides. The application of Mn (0.02 mol
I Mn) in flooded and direct-seeded aerobic rice
plants in Pakistan improved grain yield by 25.1%
(Tao et al., 2007; Li et al., 2016). In China, it was
found that the application of Mn in rice pots with
sandy loam soil improved the rice quality. For
early-season rice, the application of 1.100 mg of
MnSO, resulted in 20.83% more panicles, and the
application of 250 mg of MnSO, led to a weight in-
crease of 12.96% in 1000 rice grains compared to
the control (without Mn). Similarly, for late-season
rice, the weight of 1,000 grains was 9.89% higher
than the control, as found by Ullah et al. (2017).
Zinc is a micronutrient crucial for cytochrome
synthesis, photosynthesis, phytohormone activ-
ity, and the metabolism of carbohydrates, nitro-
gen, lipids, and nucleic acids. It also plays a role
in tryptophan and protein synthesis, as well as
gene expression and regulation. Zinc stimulates
enzymatic activities such as phosphatases and de-
carboxylases, contributes to the formation of flavo-
noid pigments and ascorbic acid, and serves as an
auxin activator (Fageria, Dos Santos, and Cobucci,
2011; Saxena, Das, and Choudhury, 2017; Noulas,
et al,, 2018; Prakash, Sobhana, Sujithra and He-
malatha, 2019). The appropriate Zn level is 20 ppm.
Levels below 10 mg kg™ lead to red pigmentation in
the lower leaves of plants, affecting flowering and
anthesis. Leaf and root atrophy occurs, and grain
yield reduces due to oxidative stress (Lee, Wissuwa,
Zamora and Ismail, 2017; Gorain, Paul, and Pari-
har, 2022). In flooded conditions, rice’s phosphate
and bicarbonate concentrations increase, reducing
Zn availability due to the low redox potential in
the soil (Sharma et al., 2013; Prakash et al., 2019).
Fageria et al. (2011) reported a 97% higher in-
crease in the grain yield in greenhouse-cultivated
rice in Inceptisol soils in Brazil with 20 mg of Zn
kg! compared to the control. Rengel, Cruz, Croce,
Montafo and Chirinos (2012) reported a 63% in-
crease in height and a 2.76% increase in rice grain
weight following foliar application of Zn (350 g
ha'). Ghoneim (2016) found that the applying

Revista Facultad de Ciencias Basicas m Vol. 18(2)

15 kg Zn ha' in the soil resulted in maximum
plant height (100 cm) and the highest grain yield
of 9.60 tons ha’. Utilizing Zn-solubilizing rhizo-
bacteria is the most effective approach to correct
Zn deficiency in a sustainable agricultural produc-
tion system. Plant growth-promoting rhizobacte-
ria (PGPR) colonize the rhizosphere and promote
rice growth mechanisms (Pradhan et al., 2021).

Main Solubilizing Microorganisms
for the Micronutrients Fe, Mn, And
Zn in Rice Cultivation

Plant Growth- Promoting Bacteria (PGPR) such as
Bacillus, Pseudomonas and Azospirillum promote
the growth of rice plants and may possess prop-
erties that aid antibiosis and induction systematic
resistance against pathogens.

Bacillus, a genus of Gram-positive bacteria
from the Bacillaceae family, is rod-shaped and ex-
hibits aerobic, or on occasion facultative anaerobic,
growth. It thrives in neutral pH conditions and
forms endospores, enabling survival in various ex-
treme environmental conditions such as extreme
temperature, pH, and salinity (Govindasamy et al.,
2010). In crop rhizospheres, bacteria like B. subti-
lis, B. licheniformis, B. megaterium, and B. pumilus
are commonly found (Griffiths, 2013; Tiwari et al.,
2019).

Pseudomonas, a genus of polarized aerobic,
Gram-negative rod-shaped bacteria from the Pseu-
domonadaceae family, exhibits optimal growth at
a pH of 6 and a temperature of 30°C (Sivakama-
sundari and Usharani, 2012; Shruti, Arun, and
Rai, 2013; Kumar et al., 2017; Meena et al., 2019).

Azospirillum, a rhizobacterium from the Rho-
dospirillaceae family, consists of curved Gram-
negative rods. It is mobile via peritrichous flagella;
strictly aerobic, and non-symbiotic nitrogen fix-
ers that inhabit soil and easily adapt and grow in
anaerobic, microaerobic, and aerobic conditions.
Azospirillum thrives best at a pH between 6 to 8
(Botero, Castano Zapata, and Saldarriaga, 2013).

Research indicates that rice plots treated with
specific strains of Pseudomonas Jesenii (R62) and
Pseudomonas synxantha (R81) at a concentration
of 1 x 10® cru showed improved Fe absorption,
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resulting in an increased average rice seed yield of
22.66 g ton"'compared to the control yield of 15.61
g ton. Conversely, rice plants inoculated with Ba-
cillus sp. (14B) exhibited an average Fe concentra-
tion of 18.55 g ton™ in rice seeds, surpassing the
control of average of 15.61 g ton” (Gusain and
Sharma; 2019).

Sharma, Shankhdhar & Shankhdhar (2013) in
India, applied three standard pGPR strains (Pseu-
domonas putida mtcc 102, Pseudomonas fluores-
cens MTCC 103, and Azospirillum lipoferum mrcc
2694) to the roots of 21-day-old rice seedlings and
found that the highest active Fe concentration was
achieved with the inoculation of Azospirillum li-
poferum in different rice genotypes. The Pusa
basmati-1 genotype exhibited the highest concen-
tration at 25.30 (ug g* pw) compared to the con-
trol’s 14.39 (ug g' Dw).

In Brazil, it has been reported that Bacillus
sp. applied at a concentration of 1 x 10® CFuU is the
main Zn-solubilizing microorganism (Nascente
et al., 2017). In Pakistan, Bacillus sp. sH-10 and
Bacillus cereus sH-17 at a concentration of 1x10°
CcrU (Shakeel et al., 2015); in India, Pseudomonas
aeruginosa at a concentration of 1 x 10° (Gontia-
Mishra et al., 2017), Pseudomonas fluorescens and
Pseudomonas aeruginosa at a concentration of 1 x
10° (Gontia-Mishra et al., 2016), as well as Pseudo-
monas putida MmTcc 102, Pseudomonas fluorescens
mTCC 103, and Azospirillum lipoferum mtcc 2694
at a concentration of 1 x 10’ cru (Sharma et al.,
2014).

Furthermore, they report on Pseudomonas jes-
senii in combination with Pseudomonas synxantha
(R62 + R81) and Bacillus sp. (14B) at a concentra-
tion of 1 x 10® cru. In Pakistan, in the roots of
basmati-385 rice and in basmati from clayey and
saline soil, 234 isolates of Bacillus sp. were ob-
tained at a concentration of 1x10° cru, of which
27 solubilized Zn minerals, such as Zn phosphate,
carbonate, and oxide. Bacillus SH-10 had the larg-
est solubilization zone of 24 mm with Zn phos-
phate. Bacillus cereus sH-17 achieved a maximum
solubilization of 15 mm with Zn oxides and car-
bonates. Bacillus sp. and Bacillus cereus improved
Zn translocation to the grains and increased the

yield of the mentioned varieties from 18% to 49%
(Shakeel, Rais, Hassan & Hafeez, 2015).

Pseudomonas aeruginosa has shown Zn solu-
bilization greater than 10 mm in supplemented
media, probably due to the production of organic
acids such as gluconic acid, 2-ketogluconic acid,
5-ketogluconic acid, and pentanoic acids (Gontia-
Mishra et al,, 2016; Gontia-Mishra et al., 2017;
Gusain & Sharma 2019). In India, it was found that
the application of Pseudomonas jessenii (R62) and
P. synxantha (R81) at a concentration of 1 x 10® cFu
to rice varieties Swarna, Swarna subl, IR-64, and
IR-64 subl twice at the time of seed sowing, and
transplanting significantly affected Zn absorption,
resulting in a micronutrient content in rice seeds
of 22.75 g ton™ compared to the control’s 16.60 g
ton'. The same authors determined that the Mn
concentration in rice seeds was higher at 26.66 g
ton™ with the application of P. jessenii (R62) and P.
synxantha (R81).

Nascente et al. (2017) found greater Fe and Mn
absorption in rice seeds inoculated with Pseudo-
monas sp. at a concentration of 1 x 10® cru, obtain-
ing 169 mg Kg* and 2190 mg Kg* compared to the
controls’ 122 mg Kg*' and 1.864 mg kg, respec-
tively. Similarly, seeds inoculated with Bacillus sp.
had the highest Zn content at 48 mg Kg* compared
to the control’s value of 43 mg Kg'. Ikhajiagbe &
Ohanmu (2019) found that after 13 weeks of apply-
ing Bacillus subtilis and Pseudomonas aureginosa
at a concentration of 1.52 x 10° CFu/g to rice plants,
the yield growth increased by 0.53 g compared to
that obtained by the control, 0.28 g.

Characteristics And Main Use
of Bacterial-Based Biofertilizers
Promoting Fe, Mn, And Zn Nutrition

Utilizing biofertilizers containing Bacillus sp.,
Pseudomonas sp., and Azospirillum sp. repre-
sents a promising approach to achieving optimal
crop nutrition while maintaining environment
integrity (Velasco Sanchez, Delgado Garcia, and
Moreno Lora, 2017). Bacillus bacteria, belong-
ing to the Bacillaceae family, are Gram- positive
bacterias aerobic or facultative anaerobic growth.
They thrive in neutral pH environments and can
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withstand extreme temperature and pH condi-
tions, including saline conditions (Griffiths, 2013;
Tiwari, Prasad & Lata, 2019). Common species in-
clude B. sibtitlis, B. licheniformis, B. megaterium,
and B. pumilus (Tiwari et al., 2019; Tiwari, Prasad
and Lata, 2019).

Pseudomonas, a genus of MIGULA (1894) found
that Gram-negative bacteria of the Pseudomonada-
ceae family, have approximately 191 diverses spe-
cies (Anzai, Kim, Park, Wakabayashi and Oyaizu,
2000; Sankari Meena et al., 2019). These bacteria
exhibit optimal growth conditions at a pH of 6 and
a temperatura of 30°C (Kumar et al., 2017; Sankari
Meena et al., 2019; Shruti K, Arun K, 2013).

Azospirillum, a genus of bacteria from the
Rhodospirillaceae  family, comprises
negative bacilli capable of thriving under anaero-
bic, microaerobic, and aerobic conditions. They
exhibit optimal growth at a pH range of 6 to 8
(Botero, Castanio Zapata, and Saldarriaga, 2013).

An agricultural inoculant for the solubilization
of soluble micronutrients in soil for promoting the
production of physiologically active substances is
a consortium of Bacillus licheniformis (7 x 10° cru
ml?), Bacillus subtilis (6 x 10° cru ml!), and Pseu-
domonas fluorescens (7 x 10° cru ml"). Biofertil-
izers containing Bacillus megaterium (1 x 10® cFu
ml™?) exhibit direct phytohormonal action on crop
growth and productivity, favoring the absorp-
tion of minerals such as Fe, Mn, and Zn, as well
as solubilizing macronutrients like phosphorous.
Similarly, biofertilizers with Pseudomonas sp. (1 x
10® cru mL™") enhance growth and yields (Kumar,
Meena & Singh, 2016). Pseudomonas fluorescens
also improves yield and provides biological control
over pathogens through siderophores production.

Azospirillum sp. (7 x 10 cFu mL™) serves as a
biological inoculant promoting plant growth when
applied to soil or seeds. Azospirillum brasilense M3
(1 x 10® cru mL™) supplies plants with essential N-
P-K nutrients, stimulates phytohormones produc-
tion, and fosters plant growth (Pereg, de-Bashan,
& Bashan, 2016). In rice cultivation, Azospirillum
brasilense (1 x 10° cFu mL™) stimulates the synthe-
sis of indole-3-acetic acid (1aa) and plant growth
regulators such as gibberellins, cytokinins, and
ethylene (Bashan & de-Bashan, 2010).

Gram-

Revista Facultad de Ciencias Basicas m Vol. 18(2)

Commercially available under various brand
names, Bacillus sp., Pseudomonas sp., and
Azospirillum- based biofertilizers are offered alone
or in mixtures tailored for rice cultivation in coun-
tries such as Mexico, Colombia, and Spain (Portal
Tecnoagricola, 2023; Organizacién Pajonales sas,
2023; 1CA; 2023).

Mechanisms Involved in the
Solubilization of The Micronutrients
by the Microorganisms Bacillus,
Pseudomonas, and Azospirillum

To address (Fe) deficiency in calcareous soils, rice
employs Fe absorption mechanisms that integrate
two strategies within a specialized system (Ishi-
maru et al., 2006; Kar & Panda, 2020). However,
this crop can adapt to conditions where Fe** is
more prevalent than Fe’* (Aguado-Santacruzetal,,
2012). In strategy I, first, protons (H") are released
from the root plasma membranes, acidifying the
soil and enhancing the solubility of Fe’*. Secondly,
the activity of ferric reductase-oxidase (OsFrO) en-
hances the ability to reduce chelated iron 111 (Fe**)
to iron (11) Fe?* on the root surface. Thirdly, Fe*
is absorbed across the root plasma membrane,
reduced by Fe(i11) chelate reductase encoded by
genes (iron transporters) IRT1 and IRT2, which en-
code Fe(11) transporters. Moreover, the IRT1 gene
is responsible for Zn and Mn absorption as well
(Ishimaru et al., 2006; Marschner, 2011; Wairich
et al., 2019; Kar & Panda, 2020; Ning et al., 2023).
(Refer to Figure 1).

Wairich et al. (2019) demonstrated that Bacillus
subtilis GBo3 acidifies the rhizosphere and activates
strategy I's Fe absorption responses, resulting in a
high content of endogenous plant iron. Bacillus
subtilis bacteria can directly activate strategy I for
Fe acquisition in Arabidopsis thaliana plants with-
out colonizing the plant’s roots. This mechanism
is attributed to the production of volatile organic
acids by the microorganism (Aguado-Santacruz et
al., 2012).

In strategy 11 (refer to Figure2), rice plants syn-
thesize and excrete phytosiderophores (ps) of the
mugineic acid (Ma) family, derived from deoxy-
mugineic acid (DMA), to chelate Fe** into Fe**PS
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Figure 1. Procedure for Iron Uptake, Symplastic Transport, and Xylem Transport in Rice
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Source: Adapted from Ariga et al. (2014).

complexes in the plant root through the Osysr15
protein. The OsysL9 protein is possibly respon-
sible for transporting Fe (111)-pDmMA and Fe (11)-ni-
cotianamine (NA) into the endodermis of the root
(Inoue et al., 2009; Nozoye et al., 2011; Senoura et
al., 2017; Kawakami & Bhullar, 2018; Q. Wu et al.
2022). Internal translocation of Fe and Mn to the
shoots and seeds is facilitated by the OsysL2 pro-
tein. Meanwhile, regarding Mn transport and reg-
ulation in rice, there is limited research (Ishimaru
et al., 2010; Petrik, Zhai, Haas, and Decristoforo,
2017). In rice plants with low Fe concentrations,
both deoxymugineic acid (bma) and mugineic acid
(ma) were found, with PS (uM) and Fe (uM) con-
centrations ranging from 0.49 uM (Nozoye et al.,
2011; Ariga, Hazama, Yanagisawa, and Yoneyama,
2014). The release of PS, akin to the uptake of Fe**-
ps complexes by the plant, occurs after exposure
to the first light rays, where the complex enters the
cytoplasm through Fe**-PS transporters attached
to protons on the plasma membrane of root cells
(Ishimaru et al., 2006).

Under conditions of Fe and Zn deficiency, mi-
croorganisms synthesize and secrete low molecu-
lar weight Fe-chelating proteinaceous siderophores
of the catecholate, hydroxamate, phenolate, and
carboxylate types to enhance the availability of
Fe** and transport across the plant cell membrane

Strategy I

Rizosphere PH5-7

Bacillus H Azospirilum HPseudomonus‘

OsFRO Fe **00H
Fe* Chelate Reductase | COeIfie
.. DSFRO Fe
Fe3* Chelate Reductase Humates
OsFRO Fe
""""""""""" Organic
3+
Fe** Chelate Reductase Acids

Bacillus H Azospirilum HP

(Kumar et al., 2017; Hofmann, Retamal-Morales,
and Tischler, 2020; Roskova et al., 2022).

Das, Prasad and Srivastava (2007) reported
the large- scale synthesis of siderophores in spe-
cies such as Bacillus, Pseudomonas, Azospiril-
lum, among others. Bacillus megaterium has the
capacity to produce siderophores (Santos, Neto,
Machado, Soares, & Soares, 2014). Siderophores
are synthesized from L-methionine and involve
enzymes such as S-adenosylmethionine synthe-
tase, nicotianamine synthase, nicotianamine ami-
notransferase, and desoximugineic acid synthase
(Roskova et al., 2022). The synthesis of sidero-
phores in rice plants was initially studied by Tak-
agi (1976). Bacterial siderophores, like pyoverdine
produced by Pseudomonas fluorescens, exhibit
high affinity for iron (Yehuda et al., 1996; Bon-
neau, Roche & Schalk, 2020).

The availability of Mn in the soil varies and de-
pends on numerous environmental and biotic soil
factors. Plants require Mn?** at a much higher con-
centration than fungi and bacteria (Marschner,
1995, Khoshru et al., 2023). Many bacteria have
sophisticated mechanisms for coordinating the
detection of Mn and the responding to oxidative
stress. For instance, Bacillus subtilis possesses a
coordinated network of metalloproteins, includ-
ing a Fe** uptake regulator (plasma membrane), an
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Figure 2. Process of Strategy Il in Rice
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Source: Adapted from Ariga et al. (2014).

Mn?** transport regulator (MntR), and a Fe**/Mn**
peroxide regulator repressor (PerR) of genes. This
network regulates intracellular concentrations of
Fe* and Mn?*, detects H,0O, concentrations, and
ultimately controls, through PerR, oxidative stress
response genes (Herbig and Helmann, 2001; Sie-
prawska et al. 2024).

Zinc-solubilizing bacteria employ specific
mechanisms to transform insoluble forms of
Zn into soluble forms that are easily absorbed
by plants. They achieve this through chelation,
forming chelating compounds by binding with
Zn, and through acidification, producing or-
ganic acids that reduce the soil pH, thereby fa-
cilitating the mobilization of Zn and improving
root growth and absorption area (Neumann and
Rombheld, 2002; Subramanian, Tenshia, Jayalask-
shmi, Ramach and Ran 2009). In such cases, the
PGRP group of bacteria, especially Bacillus sp.
and Pseudomonas fluorescens, demonstrate Zn
solubilization across a wide range of Zn miner-
als. Additionally, Bacillus megaterium and Ba-
cillus edaphicus increase Zn availability in the
soil. These mechanisms also involve the secre-
tion of root chemical exudates, providing an
additional benefit to the solubilization process
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of this micronutrient (Maheshwari, 2012). For
example, Pseudomonas fluorescens secretes glu-
conic and 2-ketogluconic acids into the rice crop
during Zn phosphate solubilization (Di Simine,
Sayer & Gadd, 1998). Some Zn solubilization
mechanisms function via the production of in-
dole-3-acetic acid (1a4), as determined by grow-
ing microorganism strains like Pseudomonas on
LB agar plates supplemented with 100 ug mL" of
tryptophan (Shrivastava and Kumar, 2011). Ad-
ditionally, anions can chelate Zn and enhance its
solubility (Jones & Darrah, 1994). Other mecha-
nisms in Zn solubilization include the production
of siderophores (Saravanan et al.,, 2011b; Nor-
thover et al. 2021), oxidoreductase systems in cell
membranes, and chelating ligands (Singh et al.,
2012). Strains of Bacillus sp. and Bacillus cereus
have been found to enhance the translocation of
Zn and other nutrients to the grains, thereby in-
creasing rice variety yields (Shakeel et al., 2015;
Barbosa et al., 2023).

The various mechanisms mentioned for the
solubilization of the micronutrients Fe, Mn and
Zn, associated with microorganisms Bacillus,
Pseudomonas and Azospirillum, are presented in
Table 1.
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Table 1. Different mechanisms involved in the solubilization of the micronutrients Fe, Mn and Zn by the microorga-
nisms Bacillus, Pseudomonas and Azospirillum.

Genus and species of

microorganism

Mechanisms of action

References

Herbig & Helmann, 2001; Ishimaru et al.,
2006; Das et al., 2007; Inoue et al. 2009;

Bacillus: B. sp.(1), si:;izegy1i1(¥) Nozoye et al., 2011; Marschner, 2011;
B. subtilis (2), 9y , I Maheshwari, 2012; Aguado-Santacruz et al.,
. secrecion Solubilization e .
megaterium (3), siderophore of Zinc (1), 3) 2012; Srivastava et al., 2013; Santos et al.,
B.sp. B. megateriumy P Solubilization '~ " 2014; Ariga et al., 2014; Shakeel et al., 2015;
. secretion of (4), (5), (6) . .
B.edaphicus.(4) Fe (1), 2), (3) of Mn (1), (3), siderophore Kumar et al.., 2017; Senoura et al., 2017;
B.sp.y B. cereus (5) '(5) T (5), (6) secretign n Kawakami & Bhullar, 2018; Wairich et al.,
B. subtilis, B. Solubilization (5) ' 2019; Hofmann et al., 2020; Kar et al., 2020;
licheniformis, of Fe () Panda, 2020; Roskova et al., 2022; Q. Wu et
Azospirillum (6) 5) (6)' al. 2022; Barbosa et al., 2023; Ning et al.,
! 2023; Sieprawska et al. 2024;
ICA, 2020. www.ica.gov.co
Santos et al., 2014
Pseudomonas: Solubilization Roskova et al., 2022 .
Saravanan et al. 2007;
P. florescence(1), of Zn !
, Northover et al. 2021;
P. putida mtcc 102 y phosphate. .
. Shakeel et al., 2015; Meena et al., 2016
P. fluorescens mtcc 103 (2), (Chelating e
I Gontia-Mishra et al., 2017
P.sp(3), Solubilization Solubilizati Compounds) Bapiri et al.. 2012 & Gontia-Mish |
P. aeruginosay of Fe (2),(5) olubilization ) apirietal, 128 ontia-Mishra et al.,
) " of Mn (2), (6) L 2016; Gontia-Mishra et al., 2017
P. fluorescens (4), (6) Solubilization ) )
. . N . Gusain & Sharma, 2019;
P. jessenii en combinacion of Zinc (2),
Sharmaetal., 2014
con P. synxantha (4), (6)
(R62 +R81) (5) siderophore Sharma et al,, 2014
P.sp. (6) ! secretion (2) Shakeel, Rais, Hassan, & Hafeez, 2015
3P Maheshwari, 2012
Di Simine, Sayer & Gadd, 1998
Santos et al., 2014
Roskova et al., 2022
Sharma et al., 2014; Sharma et al., 2013
Flores et.al., 2010; Del Amor & Cuadra, 2011;
Azospirillum: A. lipoferum Schoebitz, Mengual, & Roldan, 2014
MTCC 2694 (1) https://www.probelte.es/productos/detalle/
A. brasilense M3 Siderophore Solubilization es/bulhnova/137
(Bulhnova), A. brasilense  production (1) of Zn(1),(2),  https://www.buscador.portaltecnoagricola.

(2) Azospirillum sp.
Dimazos sc (3)

com/vademecum/esp/producto/KIPLANT%20
iNmass
ICA, 2020. www.ica.gov.co;
Maheshwari, 2012
El-Sayed et al., 2014; Sharma et al., 2014;
Abaid-Ullah et al., 2015

Discussion

The microorganisms Bacillus, Pseudomonas, and

Azospirillum exert an effect on the availability of

Fe, Mn, and Zn in calcareous soils for rice culti-

vation by secreting siderophore compounds that

absorb micronutrients in the form of chelates

through plant roots. Bacillus megaterium, Pseudo-
monas putida, P. fluorescens, and P. aeruginosa are
commonly reported as producers of siderophores

and for transporting minerals internally to plant

cells, thereby enhancing crop nutrition (Das et al.,
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2007; Aguado-Santacruz et al., 2012; Srivastava,
2013; Sharma et al., 2014; Santos, 2014; Shakeel
et al., 2015; Gusain & Sharma, 2019). However,
Ariga et al. (2014) attribute the solubilization of
unavailable micronutrients to phenols or aromatic
compounds. Ishimaru et al. (2006) mention that
carrier genes are required by plants to transport
chelated minerals for micronutrient absorption, as
seen with Bacillus subtilis, whose oxidative stress
genes regulate Fe** and Mn?** (Herbig & Helmann,
2001). Consequently, it can be inferred that these
microorganisms contribute to micronutrient as-
similation, not only through Siderophore produc-
tion but also through the synthesis of phenols and
other plant growth-promoting substances such as
indole acetic acid, abscisic acid, and cytokinins
(Nautiyal, 2016; Tiwari & Singh, 2017; Vimal et al,,
2019).

When these microorganisms are applied in
rice cultivation, they positively impact the pan-
icles plant height, tillers numbers, and grain size
and weight (Shakeel et al., 2015; Meena et al,
2016; Gontia-Mishra et al., 2017; Nascente et al.,
2017; Yang, 2020). These mechanisms, at a bio-
chemical level, may involve enzymatic reactions,
influencing plant growth-promoting substances,
thereby affecting rice plant and grain formation
(Noulas et al., 2018; and Prakash et al., 2019).
Additionally, environmental and edaphic condi-
tions play a crucial role in plant development and
grain quality. In this way, the concentrations of
minerals such as Fe, Mn and Zn the depend on
pH (between 5 and 7), soil texture, rice genetics,
and crop nutrition (Marschner, 2011; Shakeel et
al. 2015; Ullah et al., 2017; Gontia-Mishra et al,,
2017; Infoagro, s.f).

In the market, registered biofertilizers con-
taining Bacillus, Pseudomonas, and Azospirillum
(Dimazos® sc-Biocultivos s.A., Bulhnova-Probelte,
S.A.U, Kiplant iNmass®- Portal Tecnoagricola,
Fosfobacter®- Organizacion Pajonales sas, Actifos
sL Mycros®-Agro Valley sas) have demonstrated
favorable results in solubilization Fe, Mn and Zn
micronutrients and can be used in rice agriculture.

However, further research is recommended
on the application of Pseudomonas and Bacillus
as biofertilizers to enhance Mn solubilization in
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rice cultivation, given its significance as a micro-
nutrient for crop yield. The majority of research
on these microorganisms focuses in solubilizing
micronutrients Fe and Zn (Noulas, et al. 2018;
Prakash et al. 2019). Similarly, expanding knowl-
edge on azospirillium application is suggested, as
it is the least mentioned genus of plant growth-
promoting, when compared with pseudomonas
and bacillus for the solubization of Fe, Mn in the
aforementioned crops.

Conclusions

Iron, Mn, and Zn solubilizing microorganisms
from the genera Bacillus, Pseudomonas, and Azo-
spirillum have been extensively utilized in rice
cultivation across various countries ncluding
India (53%), Pakistan (13%), Brazil (7%), China
(7%), Egypt (7%), Iran (7%), and Belgium (6%).
The inoculation of Bacillus, Pseudomonas, and
Azospirillum bacteria into rice varieties grown in
calcareous soils with limitation in Fe,Mn, and Zn
facilitates the availability of these micronutrients
and the formation of siderophores by the plants.
This process promotes soil acidification and aids
in converting non-assimilable forms into soluble
ones, thereby enhancing rice’s metabolic and en-
zymatic processes, ultimately leading to improved
crop development, yield, and grain quality.

Globally, more research has been conducted on
Pseudomonas and Bacillus for the solubilization of
Fe and Zn minerals compared to Mn, where fewer
experiments in rice cultivation have been identi-
fied. Azospirillum, on the other hand, is less fre-
quently utilized for Fe, Mn, and Zn fertilization.
The utilization of these bacteria holds promise
for increasing rice yield, quality, and productivity
while mitigating negative environmental impacts
associated with synthetic fertilizers.
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