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Abstract: pharmaceutical wastewater contains compounds that, in low concentrations, affect ecosystems 
for being endocrine disruptors. Therefore, advanced oxidation processes have been proposed as an ideal 
treatment strategy. Within these technologies, heterogeneous photocatalysis stands out as a high-efficiency 
and low-cost technology. This research provides a systematic review on the degradation of wastewater from 
the pharmaceutical industry and the significant advances concerning its degradation by heterogeneous pho-
tocatalysis. We used Thesaurus, keywords, and Boolean search in the selected databases: Dialnet, Science 
Direct, Scopus, Redalyc, SciELO, ProQuest, and American Chemical Society. We also set inclusion/exclusion 
criteria based on the PRISMA statement, developed a bibliometric parameter, performed a statistical analy-
sis, and established the best-operating conditions for technology implementation. In conclusion, heteroge-
neous photocatalysis is a promising proposal for treating the study matrix. 
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Tratamiento de aguas residuales por fotocatálisis 
heterogénea: una revisión sistemática

Resumen: las aguas residuales farmacéuticas contienen compuestos que, en bajas concentracio-
nes, afectan los ecosistemas por ser disruptores endocrinos. Por tanto, se han propuesto procesos 
de oxidación avanzados como una estrategia de tratamiento ideal. Dentro de estas tecnologías, la 
fotocatálisis heterogénea se destaca como una tecnología de alta eficiencia y bajo costo. Esta inves-
tigación proporciona una revisión sistemática sobre la degradación de las aguas residuales de la 
industria farmacéutica y los importantes avances en su degradación por fotocatálisis heterogénea. 
Usamos Tesauro, palabras clave y búsqueda booleana en las bases de datos seleccionadas: Dialnet, 
Science Direct, Scopus, Redalyc, SciELO, ProQuest y American Chemical Society. También estableci-
mos criterios de inclusión/exclusión basados en la declaración PRISMA, desarrollamos un parámetro 
bibliométrico, realizamos un análisis estadístico y establecimos las mejores condiciones operacio-
nales para la implementación de la tecnología. En conclusión, la fotocatálisis heterogénea es una 
propuesta prometedora para el tratamiento de la matriz de estudio. 

Palabras clave: descomposición; industria farmacéutica; fotoquímica; revisión; fotocatálisis

Tratamento de águas residuais por fotocatálise heterogênea: 
revisão sistemática 

Resumo: as águas residuais farmacêuticas contêm compostos que, em baixas concentrações, afetam 
os ecossistemas por ser disruptoras endócrinas. Portanto, os processos avançados de oxidação vêm 
sendo propostos como estratégia de tratamento ideal. No âmbito dessas tecnologias, a fotocatálise 
heterogênea se destaca como uma tecnologia de alta eficiência e baixo custo. Nesta pesquisa, são 
apresentados uma revisão sistemática sobre a degradação de águas residuais da indústria farma-
cêutica e os avanços significativos relativos à sua degradação por fotocatálise heterogênea. Foi utili-
zado um dicionário de sinônimos, palavras-chave e busca booleana nas bases de dados selecionadas 
(Dialnet, Science Direct, Scopus, Redalyc, SciELO, ProQuest e American Chemical Society). Também 
foram determinados critérios de inclusão e exclusão com base na declaração Prisma, desenvolvido 
um parâmetro bibliométrico, realizada análise estatística e estabelecidas as melhores condições de 
operação para implementar a tecnologia. Em conclusão, a fotocatálise heterogênea é uma proposta 
promissora para tratar a matriz de estudo.

Palavras-chave: decomposição; indústria farmacêutica; fotoquímica; revisão; fotocatálise
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Introduction
Due to their high organic load, wastewaters are 
considered highly complex matrices. Depending 
on their physicochemical nature and composition, 
their elimination capacity may be affected. This 
condition is reflected in waters from the pharma-
ceutical industry that, after traditional purifica-
tion processes, retain traces of some medications, 
distinctive of this wastewater type [1]-[4]. Gener-
ally, due to their chemical nature, some of the ac-
tive ingredients in pharmaceutical wastewater are 
analgesics, antihypertensives, and antimicrobials 
called emerging pollutants, which behave as hor-
mone mimicking chemical, producing significant 
effects on ecosystems and consequently on human 
beings [5]-[6].

Accordingly, various removal processes have 
been applied, such as coagulation [7], flocculation 
[8]-[9], absorption [10], oxidation chemistry [11], 
and biological methods [12]. However, their main 
limitation is that they are unable to eradicate com-
pounds (especially if they are highly persistent), 
increasing operating costs and reducing viability 
in industrial scaling [5]. 

Studies have been carried out where advanced 
oxidation processes have been incorporated as 
an outstanding tool for removing this pollutant, 
including Fenton [13], ozonation [14], UV/H2O2 

[15]-[16], UV/H2O2/Fe2+ [4], and heterogeneous 
photocatalysis [17]. They have shown effective-
ness in photodegradation processes between 30 
and 100 % on average, proving highly efficient in 
treating these pollutants. 

Specifically, heterogeneous photocatalysis has 
attracted considerable interest, as it is an afford-
able, versatile, and easy-to-implement technique. 
However, to date, there is no literature review that 
collects all the advances in operating conditions 
and effectiveness compared to other technologies 
for pharmaceutical wastewater treatment. Thus, 
this research provides a literature review on the ad-
vances in the heterogeneous photocatalysis process 
for pharmaceutical wastewater treatment between 
2015 and 2020. We searched different databases, 
used inclusion/exclusion criteria, and reviewed 

contents, among other actions. Analysis of the 
bibliometric parameter, descriptive analysis of 
databases and study variables were also per-
formed to obtain representative results for each 
variable and ensure that the selected literature 
has statistical credibility.

Materials and Methods

Literature sources and search 
strategies
Initially, for the methodological path of this re-
search, the specialized metasearch engine Google 
Scholar was used. In parallel, we explored data-
bases such as ProQuest, Redalyc, Dialnet, Scien-
ceDirect, Scopus, Scielo, and American Chemical 
Society for publications between 2015 and 2020.

For the activation of those searches, we used 
syntactic combinations of keywords in English to 
improve the search, taken as repetitive terms from 
previous Thesaurus and other queries: “degrada-
tion of pollutants or pharmaceutical industry,” 
“degradation of pollutants and heterogeneous 
photocatalysis,” “pharmaceutical industry and 
heterogeneous photocatalysis,” “pharmaceutical 
industry,” “heterogeneous photocatalysis and 
degradation,” and “pharmaceutical and photo-
catalyst.” With these results, we carried out the 
descriptive analysis of the searches and developed 
a bibliometric parameter. Of note is that this pa-
rameter allows identifying trends in knowledge by 
applying quantitative methods that enrich the lit-
erature review [18].

Inclusion/exclusion criteria
First, duplicate papers found within the search 
in the different selected databases were excluded. 
Subsequently, the scoring rubric developed by the 
research group was applied, taking some criteria 
from the PRISMA Statement. We took into account 
seven items (title, DOI, basis, method, selection of 
studies, data collection, and conclusions), scoring 
articles on a scale from 1 to 5, 1 being the lowest 
and 5 five the highest [19]-[21]. After obtaining 
the respective score and the best-rated articles, we 
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established the operating conditions in the hetero-
geneous photocatalysis process for this wastewater 
type.

Statistical analyses
According to descriptive statistical analyses, we 
prepared simple bar diagrams and horizontal bar 
diagrams with respect to different databases and 
their relationship with Boolean search, thus deter-
mining the bibliometric parameter. Additionally, 
for operating condition analysis, box plot analysis 
and histograms were performed for all variables, 
taking the numerical results reported. All the gra-
phical analyses shown in this research were ca-
rried out through R statistical software.

Results

Descriptive database results
The databases above were used for article search 
to construct metadata with a combination of 
keywords and selected Boolean operators. Fig. 1 
employs letters to identify each term. Since the 
Boolean operator “OR” is a generalized search, 
the Boolean operator “AND” was given greater rel-
evance to ensure that all terms were included in 
the query.

While the ProQuest database had 259,007 
articles, the best results were found on the 

ScienceDirect platform (4,247) since the articles 
consulted were consistent with the research needs 
using the three combined keywords. Thanks to 
these results, the following bibliometric param-
eter was developed. It should be remembered that 
bibliometric parameters are the set of terms that 
enhance an effective query [22]: 

Photocatalytic degradation in 
pharmaceutical wastewater = X and Y and Z

Inclusion/exclusion criteria
For discriminating the selected articles on this re-
search, we identified 93.2854 records through da-
tabase search, as shown in Fig. 2. discrimination 
started by searching within the last five years us-
ing the Boolean operator “AND,” cutting down to 
6,170 papers. Then, a second exclusion was made 
based on the preliminary review of the title and 
abstract, obtaining 3,020 preselected documents. 
Afterward, a third exclusion was performed con-
cerning keywords and optimal Boolean operators, 
resulting in 1,970 documents. Within the prese-
lected articles, we reviewed again the titles and ab-
stracts to determine whether the publications met 
the needs of the research; therefore, 254 articles 
were selected. We conducted a preliminary review 
of the documents, reducing them to 54, assessed 
through the rubric developed in this research. This 
discrimination of results is explained in Fig. 2.
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Fig. 1. Results of the keywords with the Boolean operators “OR” and “AND.” X = degradation of pollutants; Y = phar-
maceutical industry; Z = heterogeneous photocatalysis. 
Source: own elaboration.
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Then, we performed a graphic analysis of the 
54 articles discriminated by score, as shown in Fig. 
3; the yellow bar represents 14 articles with a score 
equal to 2, the green bar represents 24 articles with 
a score equal to 3, and finally, the red bar repre-
sents 16 articles scoring 4. Those scored between 
3 and 4 were taken to ensure a significant number 
of articles.

After critically reading the 54 articles chosen, 
we could establish at a general level the influential 
variables within the photocatalytic process for 
this matrix type, particularly pH, pollutant con-
centration, photocatalyst concentration, irradia-
tion time, and the life cycle of the photocatalyst 

Fig. 2. Discrimination of the selected articles. 
Source: own elaboration.
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as highly significant variables within the process 
[23].

Descriptive analysis of the 
variables
Research carried out on the subject matter and 
its recurrence in reports were taken as a reference 
for the descriptive analysis of variables. Initially, 
in Fig. 4 shows the histogram and the boxplot of 
pH in the photodegradation process. The best re-
sults occurred round pH 6 and the greatest dis-
persion of results occurred when the pH tends to 
increase. Furthermore, the degradation processes 
are highly dependent on the characteristics of 
each pollutant, taking into account that there is a 
part of the process where adsorption is essential. 
The generation of pollutant microspecies due to 
changes in pH would also significantly affect the 
process.

A clear example of this is the variability of ibu-
profen at different pH levels. It can be observed 
that at an acidic pH ranging from 1 to 4, the spe-
cies is conserved, and from pH 5 onwards, a proton 
is lost, making the conditions in which it can be 
treated different. This variability would affect the 
efficiency in the photodegradation process [24]-
[30]. Moreover, extreme acidity values can create 
an excess of hydrogen ions on the surface of the 
material, which impact its adsorption processes 
[29]. The pKa of drugs has a significant incidence 

within in the photocatalytic process; its equilib-
rium favors reactants, protonates the surface, and 
consequently helps in degradation processes. A 
clear example is ibuprofen, found that at pH 5.2, 
the ibuprofen is a weak acid, as reported in the re-
search [31]-[36].

For the analysis of pollutant concentration 
shown in Fig. 5, the best results occurred at very 
low concentrations (speaking of ppm). This result 
is very consistent with the study matrix, given that 
emerging pollutants are in the order of ppb (parts 
per billion), proof of the potential application of 
the technique for this pollutant. In the case of the 
boxplot, the variability within the results was very 
low compared to the mean, clarifying that when 
initial concentrations are deficient, degradation 
is easier. When the initial concentration is high, it is 
used to show degradation paths since it is not pos-
sible at low concentrations. 

When reviewing the graphic analysis, the pol-
lutant concentration is not a significant variable 
in the photocatalytic process since it could be es-
tablished that at low or high concentrations, the 
effective rates of photodegradation are high [37]. 
However, in agreement with the results reported 
in Fig. 5, the studies mentioned that the photo-
degradation can work at low concentrations, and 
although it was not a significant variable, its effi-
ciency was an added value in this concentration 
[25]-[26], [38]-[43].
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Then, for the concentration analysis of the pho-
tocatalyst based on the studies reported (Fig. 6), the 
boxplot reveals that there is dispersion in the data 
from 40 to 200 ppm, as demonstrated in the his-
togram too, followed by data with values ranging 
from 500 to 2,000. Therefore, we established that 
the lower the concentration of the photosensitizer, 
the better the photodegradation, without underes-
timating that the operating conditions produce a 
transcendent effect on the results of the process. 
Several studies determined that at lower concen-
trations such as 1.52 and 2 mg/L, the removal per-
centage has been 86.75 in synthetic wastewater 
treatments, while it has been 36.31 in real effluent, 
considering the time spent as it significantly influ-
ences the photocatalytic process [44]. It was also 
found that at a lower concentration of TiO2 and 

H2O2, the percentage of degradation increases, and 
it occurs more quickly and efficiently [45]. More-
over, the effect of the typology of the light source 
(translated into energy) that participated in the 
process was established since sunlight increased 
its photocatalytic activity. In the case of ultraviolet 
light irradiation, a selective behavior was observed 
in the degradation of some drugs [25]-[26], [38]-
[40], [42], [46]-[47]. 

Another highlight is the internal porosity and 
the uniform distribution of the particle size of the 
photocatalyst since it facilitated the adsorption 
process. For this reason, micrometer powders were 
regularly used for this treatment [37]. A clear ex-
ample was anatase, considering its photocatalytic 
properties when in crystalline form, which is due 
to its remarkable photo-adsorption capacity and 

20

4

1 2
0000000000000000 1

9008007006005004003002001000 1000

1000

750

500

250

0

15

20

10

5

0

Contaminant concentration (ppm)

Fr
ec

ue
nc

y

A

Co
nt

am
in

an
t c

on
ce

nt
ra

tio
n 

(p
pm

) B

Figure 5. Histogram and boxplot of the pollutant concentration. 
Source: own elaboration.

9

4

1
000000000

33

00

22

0
1

6

90
0

80
0

70
0

60
0

50
0

40
0

30
0

20
0

10
00

10
00

20
00

2000

1000

0

5.0

7.5

2.5

0.0

Photocatalyst concentration (ppm)

Fr
ec

ue
nc

y

A

Ph
ot

oc
at

al
ys

t c
on

ce
nt

ra
tio

n 
(p

pm
) B

Fig. 6. Histogram and boxplot of photocatalyst concentration. 
Source: own elaboration.



58
■ L.I. Castaño ■ G.M. Doria Herrera ■ D.S. Grisales Castañeda

Facultad de Ciencias Básicas  ■  Vol. 16(2)

the relatively low speed of hole-electron pairs. 
Chemical reactivity depends on how the particles 
are formed in general [48]-[49].

The histogram and boxplot in Fig. 7 show the 
irradiation time variable. The histogram demon-
strates that significant results were found in times 
ranging from 100 to 400 minutes and that around 
100 minutes is the optimal working time with 
good dispersion of data, as established by the box-
plot (for drugs such as tetracycline, theophylline, 
ibuprofen, levofloxacin, paracetamol, thiacloprid, 
and amoxicillin). Moreover, there was a variation 
from 20, 30, 90 minutes, obtaining high percentag-
es of degradation of pollutants, compared to time 
ranges from 180 and 360 min, with a somewhat 
lower result. This was possible because within pho-
tochemical processes, the photocatalyst material 
could undergo photobleaching and thus decreased 

its photocatalytic capacity [17], [26]-[27], [38]-[41], 
[42], [50], [51].

In the analysis of the life cycle of the photocata-
lyst shown in Fig. 8, the results had greater disper-
sion above the mean (boxplot), revealing a more 
significant number of documents reporting the use 
of eight cycles or less. In the histogram, the best re-
sults are around four cycles. One highlight is that 
some authors carried out suspension and shaking 
processes at least twice prior to practical applica-
tion to guarantee reproducibility [27]. Besides, to 
calculate efficiency, complete analyses were car-
ried out on the interaction of the photocatalyst in 
the reaction system (a chemical reaction between 
the material and the pollutant) and the chemical 
response of the photocatalysts that measure the re-
action activity and the selectivity of the pollutant 
[27], [38], [42], [52]-[57].

Fig. 7. Histogram and boxplot of irradiation time. 
Source: own elaboration.
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Finally, the photocatalyst type was analyzed to 
understand the interaction between the photocata-
lyst and the reaction with the pollutant. Currently, 
photocatalysts such as TiO2-based photocatalysts, 
TiO2 nanoparticle-based photocatalysts based, 
perovskite-type photocatalysts, hierarchical mi-
crospheres catalysts, plasmonic photocatalysts, 
and bismuth oxyhalide photocatalysts stood out 
for having high percentages of photodegrada-
tion between 73 and 100 %. However, in terms of 
costs, the TiO2-based catalysts are less expensive 
since they only need the light source and the pho-
tocatalyst for degradation. and do not produce 
intermediate toxic products in photocatalytic de-
composition. The drawback is their dependence on 
ultraviolet (uv) light for activation (λ < 385 nm) 
[17], [38]-[40], [42], [50], [60]-[67].

Although titanium dioxide is the most widely 
used, WO3, SnO2, Bi2O3, ZnO, CdO semiconductor 
photocatalysts are also reported. Their downside is 
their stability under irradiation because they pres-
ent with narrow band spaces that can be breached 
by photoelectric corrosion [58]. The Bi2O3/g-C3N4 
compounds have changed in absorbance by addi-
tional absorption at lower energetic wavelengths, 
which provides good photocatalytic activity in the 
visible light spectrum [59].

Comparison with other advanced 
oxidation processes (aops)
The development of aops could be highlighted to 
show their merit, mainly for two reasons: (a) the 

diversity of technologies involved and (b) the ar-
eas of potential application, as shown in Table 1. 
Among the aop methods, the following stood out: 
heterogeneous and homogeneous photocatalysis 
based on uv light or the use of solar panels, vis-
ible irradiation, electrolysis, ozonation, Fenton’s 
reagent, ultrasound, and humid air oxidation. Ion-
izing radiation, microwaves, pulsed plasma, and 
ferrate were also included [68]-[69]. 

While drinking water and wastewater treat-
ment is the most common area for research and 
development, aops have found applications as 
diverse as groundwater treatment, soil remedia-
tion, municipal wastewater sludge conditioning, 
pure water production, volatile organic compound 
treatment, and odor control. However, the main 
interest of this research was the implementation of 
aops in pharmaceutical wastewater. Table 1 com-
pares the studies carried out for pharmaceutical 
wastewater using different aops.

The aops displayed high degradation, which 
ranges between 80 and 100 %. Depending on each, 
they have different reaction mechanisms but with 
a high predominance of hydroxyl radical forma-
tion. It should be noted that the main limitation 
for some of these technologies may be related to 
their high operating costs associated with energy 
consumption and the use of chemical products. A 
clear example of this was Sonolysis since the reac-
tor type used represents a costly technology com-
pared to other methods.

A method that was considered highly effec-
tive was the Fenton-based processes. Since the 

Table 1. Comparison of the efficiency of different advanced oxidation processes in degrading pharmaceutical 
pollutants

Reference Study matrix Applied oxidation process Percentage of degradation

[13], [70] Wastewater (acetylsalicylic acid, diclofenac, 
dipyrone, and paracetamol)

Homogeneous Fenton-type processes  
(FeSO4, 7H2O) 84 % 

[14] Wastewater (pharmaceutical compounds of  
anti-inflammatory antibiotics and estrogens)

Heterogeneous Fenton-type processes 
(FeSO4, 7H2O) 100 % 

[15] Simulated water (drug mix)
Ozonation > 99.9 % 
UV/H2O2 93.3 %

[71] Wastewater (ibuprofen and benzophenone-3) UVC/H2O2 activated sludge 81 %
[4] Wastewater (antibiotic cefoxitin sodium) UV/H2O2/Fe2+ 100 %

Source: own elaboration
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reagents used for its preparation are non-toxic, 
cheap, and common and can potentially be imple-
mented using solar panels, they will considerably 
reduce the cost of removal of recalcitrant pol-
lutants. Nonetheless, a disadvantage of homoge-
neous Fenton processes [72] is the high amounts 
of iron-containing sludge generated and the lim-
ited operating range of pH [13]. 

Another outstanding method is ozonation, 
both individually and in combination with other 
technologies [37], [43], [73]; for example, in the ap-
plication combined with biological processes [74], 
but it produces activated sludge [75] that, when 
operated, poses health risks. Besides, it reacts with 
water containing bromide and produces bromate, 
which is a potential genotoxic human carcinogen 
[15], [76]-[78].

Lastly, comparing these results with hetero-
geneous photocatalysis, TiO2 was a low-cost pho-
tocatalyst [79]. It is unnecessary to think of it as 
a tertiary method, as it did not have limitations, 
making it a competitive method with other aops.

Conclusions
The use of bibliometric tools is the beginning of 
a new era of statistical strategies to validate the 
credibility of a publication. For this reason, recent 
research uses these descriptive and other compar-
ative tools to verify and ensure truthfulness in the 
publication. Thanks to these resources, we could 
establish the best bibliometric parameter to gener-
ate the best search engine.

Heterogeneous photocatalysis as a technology 
for degrading pharmaceutical residues in waste-
water shows excellent degradation percentages, 
which has been and continues to be a promising 
treatment strategy. Additionally, we could conduct 
a literature search that determined what advances 
have been made in applying photocatalytic pro-
cesses to treating pharmaceutical wastewater.

Taking into account the information collected, 
it could to establish that a photocatalytic concen-
tration of around 40 ppm at pH 6, for around 100 
minutes shows good results for treating pharma-
ceutic wastewaters. However, it is possible the reuse 
the photocatalytic materials for four cycles, with-
out compromising their photocatalytic capacity.

Also, the physicochemical properties of the 
photocatalyst and the chemical nature of the pollut-
ant play a vital role in the technology effectiveness.

In terms of technology efficiency concerning 
the photocatalyst type in the last five years, vari-
ous authors demonstrated greater degradation 
when they used plasmonic photocatalysts and 
TiO2 nanoparticle-based photocatalysts, which are 
considered quite competitive technology innova-
tions compared to other technologies.
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