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in the Lyapunov sense is based on the principle that if the equilibrium point is disturbed and the flow
of the system is dissipative, then the system must be stable. This article applies these methods to
an ecological Aedes aegypti model, whose local and global stability are characterized by a population
growth threshold. In conclusion, the classical theory of dynamical systems, validated computation-
ally, yields theoretical results in favor of controlling the local population of Aedes aegypti. It becomes
usable if the proposed model is reinforced with the estimation of the parameters that describe the
relationships between stages (aquatic and aerial) of the mosquito population and the inclusion of
vector control strategies to protect people from the viruses transmitted by Aedes aegypti.

Keywords: Aedes aegypti; Taylor series; Hartman-Groliman theorem; Lyapunov function
Received: 7th August 2020

Accepted: 9th April 2020

Available online: 19th November 2021

How to cite: J. A. Olarte Garcia y A. Mufioz Loaiza, «Algunos métodos clasicos para el analisis de
un modelo de Aedes aegypti», Rev. Fac. Cienc. Basicas, vol. 17, n.° 1, pp. 101-114, nov. 2021.

*  Research article

a MSin Biomathematics, Universidad del Quindio. BS in Mathematics, Universidad del Quindio. Member
of the research group “Grupo de Modelacion Matematica en Epidemologfa”, Universidad del Quindio,
Armenia (Quindio), Colombia.

E-mail: jaolarteg@uniquindio.edu.co ORCID: https://orcid.org/0000-0002-8972-582X

b PhD in Mathematical Sciences, FCFM-BUAP, Mexico. Specialist in Biomathematics, Universidad del Quindio.
BS in Mathematics, Universidad del Quindfo. Member of the research group “Grupo de Modelacion
Matematica en Epidemologfa”, Universidad del Quindio, Armenia (Quindio), Colombia.

E-mail: anibalml@hotmail.com orcID: https://orcid.org/0000-0002-9294-1363

101


mailto:jaolarteg@uniquindio.edu.co
mailto:anibalml@hotmail.com
https://doi.org/10.18359/rfcb.5102
https://doi.org/10.18359/rfcb.5102

102

Algunos métodos cldsicos para el andlisis de un modelo
de Aedes aegypti

Resumen: |a aproximacion de la serie de Taylor se utiliza con frecuencia para convertir sistemas
dindmicos no lineales en sistemas lineales, mientras que el teorema de Hartman-GroBman anali-
za el comportamiento cualitativo local del sistema no lineal en relacién con un punto de equilibrio
hiperbolico. La estabilidad global de un punto de equilibrio en el sentido de Lyapunov tiene como
base el principio de que si el punto de equilibrio se alteray el flujo del sistema es disipativo, entonces
el sistema debe ser estable. En este articulo, aplica estos métodos a un modelo ecoldgico de Aedes
aegypti, cuya estabilidad local y global se caracteriza por un umbral de crecimiento poblacional. Se
concluye que la teorfa clasica de los sistemas dinamicos, se valida computacionalmente, arroja resul-
tados tedricos a favor del control de la poblacién local de Aedes aegypti, que se hace utilizable en la
practica si se refuerza el modelo propuesto con la estimacion de los parametros que describen las
relaciones entre las etapas (acuaticas y aéreas) que conforman la poblacién de mosquitos y la inclu-
sion de estrategias de control de vectores para proteger a las personas de los virus transmitidos por
el Aedes aegypti.

Palabras clave: Aedes aegypti; serie de Taylor; teorema de Hartman-Grolman; funcion de
Lyapunov

Alguns métodos cldssicos para a andlise de um modelo
de Aedes aegypti

Resumo: a aproximacdo da série de Taylor é frequentemente usada para converter sistemas dina-
micos ndo lineares em sistemas lineares, enquanto o teorema de Hartman-Grolman analisa o com-
portamento qualitativo local do sistema ndo linear em rela¢gdo a um ponto de equilibrio hiperbdlico.
A estabilidade geral de um ponto de equilibrio no sentido Lyapunov baseia-se no principio de que:
se 0 ponto de equilibrio for alterado e o fluxo do sistema for dissipativo, entdo o sistema deve ser
estavel. Neste artigo, sdo aplicados esses métodos a um modelo ecolégico de Aedes aegypti, cuja
estabilidade local e global é caracterizada por um limiar de crescimento populacional. Conclui-se que
a teoria classica dos sistemas dinamicos, validada computacionalmente, produz resultados teéricos
em favor do controle da populacdo local de Aedes aegypti, que se torna utilizavel na prética se o mo-
delo proposto for reforcado com a estimativa dos parametros que descrevem as relacdes entre as
etapas (aquaticas e aéreas) que compdem a populacao de mosquitos e a inclusao de estratégias de
controle vetorial para proteger pessoas dos virus transmitidos pelo Aedes aegypti.

Palavras-chave: Aedes aegypti; série de Taylor; teorema de Hartman-Grolman; fun¢@es de
Lyapunov
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Introduction

Several phenomena that occur in nature are mod-
eled by non-linear systems of ordinary differential
equations, covering a wide field of applications.
In epidemiology, for example, non-linear mod-
els serve to study the behavior of plants, animals,
and humans; in plants, dynamics include interac-
tions between crops and pests [1]-[3]. In animals,
the behavior of epizootics such as foot-and-mouth
disease, ovine brucellosis, and avian influenza
are modeled [4]-[6]. For humans, the dynamics
of infectious diseases such as malaria, influenza,
dengue, Zika, HIV, among others, are described
[7]-[10]. Economically, Lotka-Volterra non-linear
models explain the cyclical behavior of economic
growth [11]. However, most of these events must be
approached from a qualitative approach since it is
difficult to find analytical solutions.

In 1715, the mathematician Brook Taylor for-
mally introduced the concept of Taylor series as the
development of a sufficiently differentiable func-
tion in an infinite series within a domain, whose
coefficients involve the successive derivatives of the
function [12]. It is used in several branches of sci-
ence. For example, it is employed to formulate,
extend, or interpret typical models of heat conduc-
tion in physics, to develop finite difference schemes
or numerical integration methods in engineering,
and to implement computational methods that al-
low for numerical solutions to ordinary and partial
differential equations in dynamic systems [13]-[16].

Taylor series transforms a non-linear system
of differential equations into a linear system (Ja-
cobian method); linearization is local and ap-
proximated, that is, valid only for a region around
a given equilibrium point [17]. A significant re-
sult that justifies concluding about a non-linear
system from a linearized system is known as the
Hartman-Grobman theorem. This theorem says
that the solutions to an autonomous system of
ordinary differential equations in a steady-state
neighborhood look qualitatively just like the solu-
tions to the linearized system near the origin only
when the equilibrium is hyperbolic, that is, when

none of the Jacobian matrix eigenvalues have zero
real parts [18].

Another powerful method for the qualitative
analysis of a dynamical system was developed in
1892 by the Russian mathematician and engineer
A. M. Lyapunov in his doctoral thesis on the sta-
bility of motion [19]. However, the notion of an
auxiliary function has found a more comprehen-
sive range of application, and Lyapunov functions
may be used to achieve many diverse objectives.
For instance, this method may be applied to esti-
mate the rate of convergence to a steady state or
the size of a basin of attraction. It has also been
employed to prove theorems (e.g., Hopf bifurcation
theorem) [19]-[20].

The structure of the present work is as follows:
the next section provides some concepts relevant
to this study. The third section deals with the ap-
proach of the Aedes aegypti model. The analysis of
qualitative properties and numerical results of the
model are presented in the fourth and fifth sec-
tions. The paper ends with a brief discussion.

Preliminaries

The following definitions and theorems of the dy-
namical systems theory are required to study eco-
logical dynamics formally.

Definition 1. A homeomorphism between two
topological spaces, X and Y, is a one-one function,
H from Y onto X, such that H and the inverse of H
are continuous [21].

Definition 2. The non-linear system of au-
tonomous differential equations, X = f(x), is said
to be topologically equivalent to the linear system
X = Ax in the neighborhood of the origin if a ho-
meomorphism H applies to an open U onto an
open V containing the origin. The latter sends
trajectories of £ = f(x) in U onto trajectories of
X = Ax in V and preserves their orientation over
time [17].

Theorem 1. [Taylor formula] Let f(x) be a function
of C™! class in an open U € R"and let (h, x,) € U x
U. Then, for each x € Uwith x =x,+ h

Some Classical Methods in the Analysis of an Aedes aegypti Model
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This remainder admits the Lagrange form, which
is given by
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with & =xq +¢&h, 0 < & <1 [22].

Theorem 2. [Hartman-Grobman theorem] Let E,
U, and V be open subsets of R"each containing the
origin. Let I, © R be an open interval containing
zero. Let f € C' (E) and ¢, (x) be the flow of the
non-linear system x = f(x). Suppose that f(0) = 0
and that the matrix A = Df(0) (Jacobian matrix)
has no eigenvalue with zero real parts. Then, there
is ahomeomorphism H : U+ V such that for each
X, € U, and there is I, such that for all x,€ Uand ¢,
€ I, H o ¢t (x,) = e* H(x,), i.e., H maps trajectories
of % = f(x)near the origin onto trajectories of X = Ax
near the origin and preserves the parameterization
over time [17].

Lemma 1. There is a homeomorphism H of an
open set U containing the origin onto an open set
V containing the origin such that He T'=L o H,
where L is the linear flow and T the non-linear flow
att=1,ie., L(x) = e*x and locally T(x) = ¢,(x) [17].

Theorem 3. Let x = x* be an equilibrium point of
the vector field X = f(x) and let L;:U + R"be a C*
function defined in a neighborhood U of x* such
that i) L,(x*) = 0 and L,(x) > 0. If x # x* and ii)
L,(x) <0in U - {x*} then, x* is stable. Moreover, if
iii) L,(x*) < 0in U - {x*}, then, x* is asymptotically
stable [19], [23].

Theorem 4. Let 0 © U be a compact set
that is positively invariant with respect to
X = f(x). Let L, be the same function defined in
Theorem 3. Let O be the set of all points in Q) where
L,=0. Let S be the largest invariant set in ©. Then,
every solution starting in Q approaches S as t —
oo [23]-[24].

m ). A. Olarte Garcia m A. Mufioz Loaiza
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Dynamic system

This study considers the autonomous version of
the ecological Aedes aegypti model proposed in
[25], which is originally semi-coupled with the dif-
ferential equations of the breeding sites through
the variable carrying capacity of the aquatic Aedes
aegypti population. This model has the follow-
ing variables at time ¢t and parameters: x, = x,(f),
the average number of female mosquitoes in the
aerial phase; x, = x,(f), the average number of fe-
male mosquitoes in the aquatic phase; w, the rate
of transition from immature stage to adult stage; €,
adult mosquito mortality rate; ¢, per head oviposi-
tion rate; f, the fraction of eggs producing female
mosquitoes; m, the mortality rate of immature
stages; K, the carrying capacity of aquatic mosqui-
toes in epidemiologically relevant breeding sites.
The non-linear dynamic system that models popu-
lation growth is:

dx (t)
dt

= wx,(t) — ex;(t) = g1 (%1, x2)

d
O fpey1 -2t o)) = garry Y

x1(0) = x50 = 0,%,(0) =x = 0

where w>0,€>0,¢>0,1>0,K>0,and0 < f
< 1. This model makes biological sense in the posi-
tively invariant region:

w
g={In xz]TERZ:OlesEK,OSXZSK} Q)

A system of non-linear differential equations
with constant coefficients has time-independent
solutions, that is, constant solutions over time that
play an important role in the long-term behavior
of other non-stationary solutions. Linearizing the
system is necessary to know the equilibrium solu-
tions of system (1), which are solutions of the fol-
lowing homogeneous algebraic system:

0 =wx, —€xy,

0= fpxq <1 —%) — (T + w)x,

An equilibrium solution is without coloniza-
tion of mosquitoes:

x@ =10 0], ?3)
and the other with colonization:
xW =[x x] =[x (1-1/RIK] @

The equilibrium x makes biological sense if

e(r + w) _ féw
Fow ZO(E)Rm—m21 (5)

x, 20 1-

where R, is a population growth threshold of
Aedes aegypti. It is proved in [25] that the absence
of the mosquito population is stable if R,, < 1; oth-
erwise (R,, > 1), the presence of the mosquito pop-
ulation in a region is unstable.

For numerical simulation purposes, the values
of the entomological parameters were determined
by evaluating at 22°C the polynomial functions
derived from empirical data in [26], while fand K
are hypothetical (Table 1).

Table 1. Parameter values

Parameter (0] ® €
Average 3.985816 0.1017712 0.36082704
value

Parameter T K (f, Rm)
Average 0.42800864 500000 (0.5, 0.3888),
value (0.005, 38.88)

Note: Parameter unit day ©" except for K, f, and R,, that are
dimensionless.

Source: Own elaboration

Local qualitative analysis

Taylor series approximation

The idea of linearization is to shift the equilibrium
to zero. Thus, the perturbation (sufficiently small
quantity) that gives the deviation of a solution to
(1) from a generic equilibrium x* is denoted by u(f)
= x(t) - x* where u = u(t) = [u,() u,®)]", x = x(f) =
[x, () %,®]" and x* = [x*(#) x*@O]".

Some Classical Methods in the Analysis of an Aedes aegypti Model
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Denote the right side of (1) as ¢ = g(x) = =1, 2 around x* in a Taylor series under Theorem
[g.(x, %) &(x;, x,)]", replace x(f) = u(t) + x* 1. Note that g, has at least continuous third-order
in the original system, and expand g,, for each m  partial derivatives:

“ oy 0gm (x7) 0gm(x7) 02 gm(x") uf

gn(x)  Pgn(x)ud ©
dx,0x; 2 axz 2
where g(x*) = 0 for m = 1, 2. If the vector field is
approximated to first order, it will yield the follow-
ing linear system at u; and u,:
du
d_tl = —eu; + wuy = hy(ug,uy)
a . .
G=ro(1-F)m—(fo +m+0)u = hu,u) 7)
u1(0) = x19 — x1, uz(0) = x50 — X3
_ N dg; . ,
where w, €, $, T, K> 0;0<f< 1;x,20,%,20. J =Jx") = ™ [1£i<21<j<2
: ..du xf
Its matrix form is — = Ju, where:
at is the Jacobian matrix.
Similarly, if the vector field is approximated to
second order, it will yield the following non-linear
system at u;, and u,;:
du
d_tl = —€u; + wu, = f1(ug, up)
du X5 X1 fo
d_tz:fd’(l_é)%_(fd’zl"'”"‘w)uz_EuluzEfz(upuz) ®)
u1(0) = x50 — x1, u2(0) = x50 — x3.

. . . ey s d 1
Written in the matrix form, it is d—l‘ =Ju+;u"Hy,

where:
2

H = Hx") = [aa g

|l1<si<21<j<?2

iXj

is the Hessian matrix. Note that every g,, has

. L . As with system (1), the trajectories of systems
finite expansion in a Taylor series because they are Y M ) Y

polynomial functions (7) and (8) exist and do not leave the compact

A

1m={[u )T €R*: —x{ Suy S=K—xj,—x; Su, <K —x3} ©

The surfaces of Fig. 1 have been generated
for R,,> 1 and show the approximations to f,(u,,
u,) and f,(u;, u,) geometrically when (u;, u,) is

m ). A. Olarte Garcia m A. Mufioz Loaiza
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Fig. 1. Graphs of Taylor polynomials that approximate the scalar fields of system (1).

Source: Own elaboration

very close to (0, 0). Naturally, the bilinearity of
fi(u,, u,) implies that its Taylor polynomial is the
same function f,(u,, u,) in the domain II, whereas
for f,(u,, u,) the nonlinearity u,u, causes the approx-
imation to become acceptable in a §-neighborhood
of the origin, whose error will not exceed fp&*/K.
Note that disturbances can increase or decrease
over time; for example, h, (4;, u,) = 0 and h, (u,,
u,) < 0, which limit the prediction of whether the
mosquito population will tend to reach equilibri-
um with colonization still at population densities
far from this equilibrium.

Construction of a homeomorphism

Given the complexity of deducing the analytical
solution of initial value problem (8) required to
apply Theorem 2, the steps for constructing ho-
meomorphism H in Theorem 2 are indicated in
the case of non-linear system (8). Firstly, because
f=1f, £,]" € C'(TN) with IT occurred in (9) and f(0) =
0, this system can be written as
u = Au + F(u),

where:

1= [29 w = (R

Fy)]™ = f(w) — Ju, F(0) = 0, and [%] —0

Furthermore, there is an n x n (2 x 2) invertible
matrix E whose columns are the eigenvectors of ]
such that

M =E-AE=[P 0;0 Q]
where the eigenvalues of the k x k (1 x 1) matrix
P have negative real parts and the eigenvalues of
(n-1) x (n-k) (1 x 1) matrix Q have positive real
parts. If v = E'u, system (8) then will have the form
v=Mv+Gw) (10)
where G(v) = E* F(Ev). Explicitly:

](x*)=[—e w;fd)(l—xé) —<f¢%;+n+w>]

Its trace and determinant are:

X1
trJj(x*) = —6—(f¢7+n+w),

det J(x*) = e(m + w) <2Rm%; +1-— Rm>

And its eigenvalues are:

_ tr J(x*) + \/tr](x*)2 — 4det J(x¥)
B 2
(m=1,2)

Am

Manipulating the discriminant of A,, algebra-

ically, it yields
tr2J(x*) — 4det J(x*) =
(o3 enra=e) erma(1-) =™
f¢K+n+w—e + fow %/ z0

i.e., \,, € R. Additionally, inequality (11) is strict
(A, # \,) because if [x,* (f) x,* (#)]" (that is, (3) and
(4)) is replaced in (11), then fdpw(l - x,*/K) # 0.

Some Classical Methods in the Analysis of an Aedes aegypti Model
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Concerning the sign of the real part of the eigen-
values, sgn(Re(A,,)) = sgn(\,,), Table 2 contains pos-
sibilities P1 to P6, of which P4 is not biologically
admitted.

Table 2. Conditions that determine the sign of the real
eigenvalues of /

R,=a a<1 a=1 a>1
x=x*

x*=xO0 | PI:N<0,A<0 | P2:A=0,A,<0 | P3:A>0,A<0
x*=x0 | PA:N<0,A<0 | P5:A=0,A<0 | P6:A>0,A<0

Source: Own elaboration

Facultad de Ciencias Basicas = Vol. 17(1)

A pair of corresponding eigenvectors to A, and
\,is given by

p1 = [,11% 1]T andp, = [ﬁ 1]T (12)

Thus, J is diagonalizable. Its diagonalization
along with the coordinate transformation converts
system (8) into (10) or equivalently:

_fd)w((/'lz +e)v 2+ (A + A, + 26)vv, + (A + e)vzz)

vy = Ay

(A1 — 1), + K
fow((A, + v+ (A + A, + 26)vyv, + (A4 + €)v,2) (13)

1>2 = /12172 +

(M —2)(A1 + K

[11(0) v2(0)]" = [vip V20l" = E M ugo Uzol.

where M = [p, p,]and each p,, is in (12). Theo-
rem 2 shows that near the hyperbolic equilibrium
point v, = v, = 0, non-linear system (13) has the
same qualitative structure as the linear system.

Uy = MV, Uy = A0,

[Vi0 V20l" = E"Mugo Uzl (14)

Fig. 2 allows comparing the behavior of the
non-linear system with the associated linear sys-
tem in a short time interval if P1, P3, and P6 speci-
fied in Table 2 are fulfilled. The trajectories of the
states in both dynamical systems almost adjust
to each other with very little variability at each

moment. Moreover, R, is also a key parameter in
the linear model: if P1 and P6 are met, then the
trivial equilibrium point will be globally stable (a,
b, e, and f). Otherwise, it will be unstable (c and d).

The solid curves in Fig. 3 can be obtained by
applying the transformation of coordinates u =
Ev. There is again a continuous one-to-one map
of a §-neighborhood of 0 (N;) onto an open set
containing 0, H: Ny~ U, which maps ‘dotted’
trajectories in Ny onto ‘solid’ trajectories in U and
preserves the direction of the flow along the trajec-
tories (Theorem 2).

m J. A. Olarte Garcia m A. Mufioz Loaiza
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Fig. 2. Solution curves of non-linear system (8) (solid line) and linear approximation (7) (dotted line) with the initial
conditions u,=[0 5]"and [2 10]", when P1 (a and b), P3 (c and d), or P6 (e and f) are met.

Source: Own elaboration
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Source: Own elaboration
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Steps of Theorem 2

The steps for constructing a homeomorphism are
as follows [17]-[19]:

1. Given the non-linear initial value problem
v=r(v) with v(0) =v,and M = % check that
r(0) = 0 and that M is written in the form M
=[P 0;0 Q] where the eigenvalues of P have
a negative real part and the eigenvalues of Q

have a positive real part.

2. Let ¢,(v,) be the flow of the non-linear sys-
tem v = r(v), and write the solution v(¢, v,)
= ¢, () = [)/(t’ Wor 2o) 2(t, Wy, 2p)]" with v, =
[w, z,]" € R*, w, € E*, and z, € E*; here, E‘and
E“are the stable and unstable subspaces of M,
respectively.

3. Define B = ¢’ and C = e? For v = [w 2], the
‘local’ transformations are defined as:

Liw, z2)=[Bw Cz]"and T(w, z) = [Bw+ W(w, 2)
Cz+ Ww, 2)]"or L(v) =e* vand T(v) = ¢, (v).

4. There is an H (homeomorphism) that con-
tains the origin such that H o T = L o H
(Lemma 1), where L(w, z) = [@(w, 2) ¥(w, 2)]"
which  results from the equations
B®(w,z) = BCD(BW +W(w,z),Cz+ Z(w, z)),
Co(w,z) = B‘P(BW +W(w,z),Cz+ Z(w, z)).

These equations can be solved by successive
approximations, as follows:

Do(w,z) =w,
Dpi1(w,2) = BO,(B~lw+ Y, (w,2),C "z + Z;(w, 2);
Yow,z) =z,
Yer(w,2) = CT, (Bw+WWw,z),Cz + Z(w, z).

The functions Y, (t, y, z) and Z, (t, y, 2) are
defined by the inverse of T(y, z), taking as a basis
T (y,2) = P4 (x) =
B~y +1(y,2) CT'z+Z:(y,2)]"

5. Now, let H;be the homeomorphism above
and define

1
H= f L™SH,TSds
0

where L' and T' are the one-parame-
ter families of transformations defined by

L(x) = e xand T* (x) = ¢,(x).

Utilizing Lemma 1, there is a neighborhood of
the origin for which

1
Lt H =J Lt=SH,TS~tdsT!
0

1-t
f L™SH,TSdsT?*
-t

0 1-t
( f L~SH,T5ds + f L—SHOTSds> Tt
-t 0

1
= f L~SH,TSdsT*
0

=HLt.
since the Lemma 1 H, = L™V H, implies that

0 0
f L~SH,TSds = j
-t -t

1
f L™SH,TSds.
1-t

L—S—1H0T5+1ds —

Thus, H o T'=L"' H or equivalently H o ¢, (x,)
= e H(x,).

Global qualitative analysis

Authors in [25] constructed a Lyapunov function
for pseudo-steady state approximation (1) using a
linear form, which guaranteed global asymptotic
stability of the equilibrium point without coloni-
zation. Now, a new Lyapunov function character-
izes the global stability of the equilibrium point
with colonization.

Proposition: If R, > 1, then fixed point (4) of
system (1) is globally asymptotically stable in E.

Proof. The Lyapunov function is built accord-
ing to Theorem 3. Let L;: E € R?* — R, be a func-
tion of C' (E) such that

a 2, b 2
Ly(x1,x2) = E(x1 —Xx1) +E(xz —Xx3)

with [a b]" € R* and [x, x,]7 € R% Expressed
in terms of the equilibrium point, the derivatives
with respect to time are:

P (@)
=€ (%xz —x — (% — El)) (18)

= w(xz — x3) — €(x; — X9).

Some Classical Methods in the Analysis of an Aedes aegypti Model
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d
Z2 = fp((K — 2 — (+ 0K/ (FON/K

- % <<K(X1 - 7t};|—_¢wx2) — (0 —x)x — £1x2>
1
P N
(- - (- xm)
@ _K(a)x2 — €X1) _ ( _ )
— K c X1 X1)X2

ST

Clearly, for all [a b]" € R witha > 0and b >
0, it is verified that L, (x,, x,)=0 and L, (x}, x,) > 0
if (x,, x,) # (x, x,). Utilizing (18a, b), the function
L, satisfies:

s e b))

dt € dt
fqbb dx fqbb
(a(xl —x) —— (%2 — _2)) - ( —x1) (%2 — x2),
€ dt
fob (192)
(ot 2) -2 ) (oo 2) - e )
dwb
S—<a6|x1_&|2_<w|a|+f¢|b|<1—?>> |, — ||x2—£2|+f |x2—x2|
2 f¢wb 2
= —<a6|x1 —x1|" = (@lal + fplbD|xy — x1[|x2 — 22| + |x2 — x5 )
(19b)
= —(aelw > — (wa + fob)lugllu,| + fpwe ™ blu,|?) = =V (ug, u,)
with u;= x,-x, i = 1, 2. It is assumed that the
function V in (19b) is a quadratic trinomial of the
form
V(uy, up) = c?lug|? + 2cd|ug [lup | + d?|uz > = (clug| + dluy|)?. (19¢)

Equating the coefficients having the same lit-
eral factor on both sides of (19b), we obtain

*x2cd =wa+ fob  * d? = fopwe™ b * c? = ae.

m ). A. Olarte Garcia m A. Mufioz Loaiza
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Naturally, a and b must be positive. Intermedi-
ate equality is used to find the values of a and b as
the roots of the equation:

2cd = wa + fpb & 4c?d? =

(wa + fPpb)? & (wa — fpb)? =
0o a=fpwlh.

Then, choose b = w for a = f¢ and the inequality
(19a) becomes

dL, ,
= V) = —fo(ely| — wluz])?/e < 0.

Therefore,

Ly(xq, %) = f7¢ (%1 — x1)? +%(x2 - x3)?

is a Lyapunov function, whose graph is shown
in Fig. 4 by moving the fixed point x* to the origin
and taking IT (9) as its domain.

8.x 108
7.%x106
6.x 106 |
5.x 106 |
4.x106 -
3.x 106 |
2.%106
1.x 108 4

0. 208

Q 0o
_m@j’)@@ S 0000
u, AW 9 T0ggg? ~ U-

Fig. 4. Portion of the surface on the region correspond-
ing to the Lyapunov function L, (uy, u;) = feui/2 + wu/2.

Source: Own elaboration

It follows from the previous calculation that
L,= 0 if and only if x, = x, and x, = x,. By the La-
Salle’s invariance principle (Theorem 4), any solu-
tion of system (1) starting at (9) tends to the largest
invariant subset of § = {x € B: L, (x) = 0}, i.e., the
singleton set {x"}, since x is locally asymptoti-
cally stable (see Proposition 3.4 in [25]). Hence,
x W € E is globally asymptotically stable.

The importance of global stability for the triv-
ial equilibrium point is because if the eradication
of the mosquito population is achieved (R, < 1),

then the introduction of many mosquitoes will not
lead to the recolonization. This finding has pro-
found implications for public health; if this vec-
tor species self-extinguishes through an adequate
control strategy, the epidemic outbreaks of the dis-
eases they transmit will cease. Otherwise (R,, > 1),
the steady-state situation is infestation by the mos-
quito population.

Conclusion

This paper introduced specific concepts (homeo-
morphism, topological equivalence, linearization,
and stability) with applications to motivate math-
ematical population studies. In the applications of
mathematical modeling, it is necessary to study
not only the effect of the variations of the initial
data but also the vector field by means of three ap-
proaches: analytical, qualitative, and numerical.

One of the main difficulties of the analytical
approach has been the rapid growth of the math-
ematical complexity of both the models used to
describe phenomena in sufficient detail and their
analytical solutions. These difficulties arise from
the presence of non-linear terms.

The qualitative approach covers local problems,
particularly the flow behavior of ordinary differen-
tial equation systems near invariant sets, perform-
ing the linearization by the Taylor theorem for
sufficiently differentiable scalar fields in a domain
and obtaining consistent conclusions between
topologically equivalent systems thanks to the
Hartman-Grobman theorem. It also comprises
global problems that do not require solving the
systems of differential equations involved by con-
structing a suitable Lyapunov function.

Lastly, the numerical approach appeals to ap-
proximation and convergence using mathematical
software packages (Maple, Matlab, Python, among
others), capable of reproducing physical phenome-
na, known as numerical simulation, or giving ana-
lytical solutions to functional expressions through
previous programming (e.g., Picard iteration, Ado-
mian decomposition, finite differences, among
others).

Some Classical Methods in the Analysis of an Aedes aegypti Model
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The colonization process, i.e., the introduc-
tion, establishment, and spread of A. aegypti, de-
serves special attention due to potential epidemic
outbreaks of dengue, Zika, Chikungunya, and
Mayaro. In this regard, the previous analyses play
a determining role in obtaining information of
biological interest about this vector.
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