Hidrólisis del bagazo de remolacha roja y modelado de hidrolizados para la producción de bioetanol

Palabras clave: Beta vulgaris L, pretratamiento, Pirt, logística, Luedeking-Piret

Resumen

la remolacha roja en México se utiliza en la industria de los colorantes, pero el jugo de su bagazo (BRR) puede ser un carbohidrato para la producción de etanol. El presente estudio tiene como objetivo el pretratamiento del BRR con ácido (H2SO4) y álcali (NaOH) para mejorar la disponibilidad de azúcares. Además, se describe de forma cuantitativa en los hidrolizados el crecimiento microbiano, el consumo de sustrato y la producción de etanol con simulación mediante la cinética de datos de la remolacha roja y las ecuaciones logística, de Pirt y de Luedeking-Piret. Los experimentos con H2SO4 en condiciones de esterilización dieron como resultado una menor formación de fenoles y un aumento de la hidrólisis al 32 %. Se utilizaron las ecuaciones mencionadas para describir cuantitativamente los hidrolizados, el crecimiento microbiano, el consumo de sustrato y la producción de etanol, respectivamente. En el tratamiento con álcali, se encontró una diferencia media significativa (p < 0.05) en la masa del sustrato y el tiempo de reacción. El rendimiento máximo de 38 g/L de azúcares totales a las 72 h de reacción se obtuvo a partir de 6 g de BRR y H2SO4 a 0,5 N. El rendimiento de etanol fue de 15 g/L a 18 g/L, lo que representa aproximadamente del 78 % al 92 % del rendimiento teórico.

Biografía del autor/a

Donaji Jiménez-Islas, Instituto Tecnológico Superior de Huichapan

PhD in Biotechnology. Instituto Tecnológico Superior de Huichapan, Renewable Energy Engineering Division. Huichapan, Mexico.

Juan Manuel Rivera-Ríos, Instituto Tecnológico Superior de Huichapan

MS in Biotechnology. Instituto Tecnológico Superior de Huichapan, Renewable Energy Engineering Division. Huichapan, Mexico.

Josué Addiel Venegas Sánchez, Instituto Tecnológico Superior de Huichapan

PhD in Chemistry. Instituto Tecnológico Superior de Huichapan, Renewable Energy Engineering Division. Huichapan, Mexico.

Jorge Noel Gracida Rodríguez, Universidad Autónoma de Querétaro

PhD in Biotechnology. Chemistry Department. Universidad Autónoma de Querétaro. Querétaro, Mexico. 

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Donaji Jiménez-Islas, Instituto Tecnológico Superior de Huichapan

PhD in Biotechnology. Instituto Tecnológico Superior de Huichapan, Renewable Energy Engineering Division. Huichapan, Mexico.

Juan Manuel Rivera-Ríos, Instituto Tecnológico Superior de Huichapan

MS in Biotechnology. Instituto Tecnológico Superior de Huichapan, Renewable Energy Engineering Division. Huichapan, Mexico.

Josué Addiel Venegas Sánchez, Instituto Tecnológico Superior de Huichapan

PhD in Chemistry. Instituto Tecnológico Superior de Huichapan, Renewable Energy Engineering Division. Huichapan, Mexico.

Jorge Noel Gracida Rodríguez, Universidad Autónoma de Querétaro

PhD in Biotechnology. Chemistry Department. Universidad Autónoma de Querétaro. Querétaro, Mexico. 

Referencias bibliográficas

K. Baz, J. Cheng, D. Xu, K. Abbas, I. Ali, H. Ali, and C. Fang, "Asymmetric impact of fossil fuel, and renewable energy consumption on economic growth: A nonlinear technique," Energy, vol. 226, p. 120357, Jul. 2021, doi: https://doi.org/10.1016/j.energy.2021.120357

M. Ebadian, S. van Dyk, J. D. McMillan, and J. Saddler, "Biofuels policies that have encouraged their production, and use: An international perspective," Energy Policy, vol. 147, p. 111906, Dec. 2020, doi: https://doi.org/10.1016/j.enpol.2020.111906

Z. Liu, H. Moradi, S. Shi, and F. Darvishi, "Yeasts as microbial cell factories for sustainable production of biofuels," Renew. Sust. Energ. Rev., vol. 143, p. 110907, Jun. 2021, doi: https://doi.org/10.1016/j.rser.2021.110907

M. R. Barr, R. Volpe, and R. Kandiyoti, "Liquid biofuels from food crops in transportation - A balance sheet of outcomes," Chem. Eng. Sci., vol. 10, p. 100090, May 2021, doi: https://doi.org/10.1016/j.cesx.2021.100090

H. Yuan, L. Tan, K. Kida, S. Morimura, Z.-Y. Sun, and Y.-Q. Tang, "Potential for reduced water consumption in biorefining of lignocellulosic biomass to bioethanol, and biogas," J. Biosci. Bioeng., Jan. 2021, doi: https://doi.org/10.1016/j.jbiosc.2020.12.015

P. Kumar, D. M. Barrett, M. J. Delwiche, and P. Stroeve, "Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis, and biofuel production," Ind. Eng. Chem. Res., vol. 48, no. 8, pp. 3713-3729, Apr. 2009, doi: https://doi.org/10.1021/ie801542g

H. K. Sreenath, R. G. Koegel, A. B. Moldes, T. W. Jeffries, and R. J. Straub, "Ethanol production from alfalfa fiber fractions by saccharification, and fermentation," Process Biochem., vol. 36, no. 12, pp. 1199-1204, Jun. 2001, doi: https://doi.org/10.1016/S0032-9592(01)00162-5

F. Pereira Marques, A. K. Lima Soares, D. Lomonaco, L. M. Alexandre e Silva, S. Tédde Santaella, M. de Freitas Rosa, and R. Carrhá Leitão, "Steam explosion pretreatment improves acetic acid organosolv delignification of oil palm mesocarp fibers, and sugarcane bagasse," Int. J. Biol. Macromol., vol. 175, pp. 304-312, Apr. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.01.174

S. Paramasivan, S. Sankar, R. Senthil Velavan, T. Krishnakumar, R. S. I. Batcha, and K. S. Muthuvelu, "Assessing the potential of lignocellulosic energy crops as an alternative resource for bioethanol production using ultrasound assisted dilute acid pretreatment," Mater. Today: Proc., Feb. 2021, doi: https://doi.org/10.1016/j.matpr.2020.12.470

A. Bartos, J. Anggono, Á. E. Farkas, D. Kun, F. E. Soetaredjo, J. Móczó, Antoni, H. Purwaningsih, and B. Pukánszky, "Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties," Polym. Test., vol. 88, p. 106549, Aug. 2020, doi: https://doi.org/10.1016/j.polymertesting.2020.106549

Y. Sheng, S. S. Lam, Y. Wu, S. Ge, J. Wu, L. Cai, Z. Huang, Q. V. Le, C. Sonne, and C. Xia, "Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin," Bioresour. Technol., vol. 324, p. 124631, Mar. 2021, doi: https://doi.org/10.1016/j.biortech.2020.124631

H. Şenol, Ü. Açıkel, S. Demir, and V. Oda, "Anaerobic digestion of cattle manure, corn silage, and sugar beet pulp mixtures after thermal pretreatment, and kinetic modeling study," Fuel, vol. 263, p. 116651, Mar. 2020, doi: https://doi.org/10.1016/j.fuel.2019.116651

H. Günan Yücel, and Z. Aksu, "Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: Use of new detoxification methods," Fuel, vol. 158, pp. 793-799, Oct. 2015, doi: https://doi.org/10.1016/j.fuel.2015.06.016

B. Foster, B. Dale, and J. Doran-Peterson, J. "Enzymatic hydrolysis of sugar beet pulp," Appl. Biochem. Biotechnol., 2001, vol. 91-93, pp. 1-9, doi: https://doi.org/10.1385/ABAB:91-93:1-9:269

W. Gibbons, and C. Westby, "Effects of inoculum size on solid-phase fermentation of fodder beets for fuel ethanol production," Appl. Environ. Microbiol., vol. 52, pp 960-962. Oct. 1986. doi: https://doi.org/10.1128/aem.52.4.960-962.1986

Y. Zheng, C. Lee, C. Yu, Y.-S. Cheng, R. Zhang, B. M. Jenkins, and J. S. VanderGheynst, "Dilute acid pretreatment, and fermentation of sugar beet pulp to ethanol," Appl. Energy, vol. 105, pp. 1-7, May 2013, doi: https://doi.org/10.1016/j.apenergy.2012.11.070

R. Chamy, A. Illanes, G. Aroca, and L. Nuñez, "Acid hydrolysis of sugar beet pulp as pretreatment for fermentation," Bioresour. Technol., vol. 50, no. 2, pp. 149-152, Jan. 1994, doi: https://doi.org/10.1016/0960-8524(94)90067-1

R. Mitra and D. Duta, "Growth profiling, kinetics, and substrate utilization of low-cost dairy waste for production of β-cryptoxanthin by Kocuriamarina DAGII," Royal Soc. Open Sci., vol. 5, pp 1-19, 2018, doi: https://doi.org/10.1098/rsos.172318

N. Phukoetphim, A. Salakkam, P. Laopaiboon, and L. Laopaiboon, "Kinetic models for batch ethanol production from sweet sorghum juice under normal, and high gravity fermentations: Logistic, and modified Gompertz models," J. Biotechnol., vol. 243, pp. 69-75, Feb. 2017, doi: https://doi.org/10.1016/j.jbiotec.2016.12.012

O. Soto-Cruz, E. Favela-Torres, and G. Saucedo-Castaneda, "Modeling of Growth, Lactate Consumption, and Volatile Fatty Acid Production by Megasphaera elsdenii Cultivated in Minimal, and Complex Media," Biotechnol. Prog., vol. 18, no. 2, pp. 193-200, Apr. 2002, doi: https://doi.org/10.1021/bp010189y

M. Germec, I. Turhan, M. Karhan, and A. Demirci, "Kinetic modeling, and techno-economic feasibility of ethanol production from carob extract based medium in biofilm reactor," Appl. Sci., vol. 9, no. 10, p. 2121, May 2019, doi: https://doi.org/10.3390/app9102121

F. Hanaa, "Assessment of freeze-dried hydrodistilled extracts from clove; caraway, and coriander herbs as natural preservatives for butter oil," Int. J. Dairy Sci., vol 4, pp. 67-73, 2009, doi: https://doi.org/10.3923/ijds.2009.67.73

D. Jiménez, J. Páez, O. Soto, and J. Gracida, "Modelling of ethanol production from red beet juice by Saccharomyces cerevisiae under thermal, and acid stress conditions," Food Technol. Biotechnol., vol 52, pp. 93-100.

H. F. M. Ali, "Assessment of Freeze-Dried Hydrodistilled Extracts from Clove; Caraway, and Coriander Herbs as Natural Preservatives for Butter Oil," Int. J. Dairy Sci., vol. 4, no. 2, pp. 67-73, Mar. 2009, doi: https://doi.org/10.3923/ijds.2009.67.73

P. Harel, G. de La Quérière, L. Mignot, and G.-A. Junter, "Mechanical properties of sugar beet Ca-pectate gel usable for cell immobilisation, and heavy metal accumulation," Ind. Crops Prod., vol. 11, no. 2-3, pp. 259-264, Mar. 2000, doi: https://doi.org/10.1016/S0926-6690(99)00054-0

A. T. W. M. Hendriks, and G. Zeeman, "Pretreatments to enhance the digestibility of lignocellulosic biomass," Bioresour. Technol., vol. 100, no. 1, pp. 10-18, Jan. 2009, doi: https://doi.org/10.1016/j.biortech.2008.05.027

M. Galbe and G. Zacchi, "Pretreatment of lignocellulosic materials for efficient bioethanol production," Adv. Biochem. Eng./Biotechnol., pp. 41-65, 2007, doi: https://doi.org/10.1007/10_2007_070

I. E. J. Milder, I. C. W. Arts, B. van de Putte, D. P. Venema, and P. C. H. Hollman, "Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol, and matairesinol," Br. J. Nutr., vol. 93, no. 3, pp. 393-402, Mar. 2005, doi: https://doi.org/10.1079/BJN20051371

K. C. Nlewem and M. E. Thrash Jr., "Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass," Bioresour. Technol., vol. 101, no. 14, pp. 5426-5430, Jul. 2010, doi: https://doi.org/10.1016/j.biortech.2010.02.031

S. Pattra, S. Sangyoka, M. Boonmee, and A. Reungsang, "Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum," Int. J. Hydrog. Energy, vol. 33, no. 19, pp. 5256-5265, Oct. 2008, doi: https://doi.org/10.1016/j.ijhydene.2008.05.008

C. Diaz, Y. Sierra, and J. Hernández, "Determination of the percentage of ethanol produced by Saccharomyces cerevisiae from semi-purified glycerin," J. Phys. Conf. Ser., 1126, 2008. doi: https://doi.org/10.1088/1742-6596/1126/1/012008

Cómo citar
Jiménez-Islas, D., Rivera-Ríos, J. M., Venegas Sánchez, J. A., & Gracida Rodríguez, J. N. (2021). Hidrólisis del bagazo de remolacha roja y modelado de hidrolizados para la producción de bioetanol. Ciencia E Ingeniería Neogranadina, 31(2), 135–148. https://doi.org/10.18359/rcin.5699
Publicado
2021-12-31
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code