Aprendizaje estructural de redes bayesianas: Un enfoque basado en puntaje y búsqueda

  • Erwing Fabián Cardozo Ojeda Universidad Industrial de Santander
  • Henry Arguello Fuentes Universidad Industrial de Santander
Palabras clave: redes bayesianas, aprendizaje basado en puntaje y búsqueda, aprendizaje híbrido, aprendizaje de clases de equivalencia

Resumen

Una de las más recientes representaciones de conocimiento bajo incertidumbre son las Redes Bayesianas cuyo mayor atractivo es la propiedad de poder obtener dicha representación a partir de una gran cantidad de datos. El problema radica en que obtener la estructura de una red (procedimiento comúnmente llamado aprendizaje) es un problema NP-Duro, por lo cual se ha realizado una gran cantidad de trabajos para hacer el aprendizaje en los cuales, uno de los enfoques más conocidos es el llamado Basado en puntaje y búsqueda. Este artículo revisa las definiciones básicas de las Redes bayesianas, el enfoque basado en puntaje y las búsquedas y sus derivados, esto es, el enfoque híbrido y la búsqueda de clases de equivalencia; además, describe algunos algoritmos para cada enfoque y presenta un resumen de los resultados de los últimos trabajos realizados.

Biografía del autor/a

Erwing Fabián Cardozo Ojeda, Universidad Industrial de Santander
M.Sc.(c), Grupo de Investigación en Ingeniería Biomédica, Escuela de Ingeniería de Sistemas e Informática, LP 338, Universidad Industrial de Santander, Bucaramanga - Colombia.
Henry Arguello Fuentes, Universidad Industrial de Santander
Ph.D.(c), Profesor Asistente Universidad Industrial de Santander, Grupo de investigación en Ingeniería Biomédica, Escuela de Ingeniería Sistemas e Informatica, Bucaramanga - Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Lenguajes:

es

Agencias de apoyo:

Universidad Industrial de Santander, COLCIENCIAS

Biografía del autor/a

Erwing Fabián Cardozo Ojeda, Universidad Industrial de Santander
M.Sc.(c), Grupo de Investigación en Ingeniería Biomédica, Escuela de Ingeniería de Sistemas e Informática, LP 338, Universidad Industrial de Santander, Bucaramanga - Colombia.
Henry Arguello Fuentes, Universidad Industrial de Santander
Ph.D.(c), Profesor Asistente Universidad Industrial de Santander, Grupo de investigación en Ingeniería Biomédica, Escuela de Ingeniería Sistemas e Informatica, Bucaramanga - Colombia.

Referencias bibliográficas

I-Chun Chou and Eberhard O. Voit, (2009). Recent developments in parame- ter estimation and structure identification of biochemical and genomic systems. Mathematical Biosciences, 219 (2): 57-83. http://dx.doi.org/10.1016/j.mbs.2009.03.002

Hidde de Jong, (2002). Modeling and simulation of genetic regulatory systems: A literature review. I n: Journal of Computational Biology, 9(1): 67-103. http://dx.doi.org/10.1089/10665270252833208

Alberto Ambesi-Impiombato & Diego di Bernardo Mukesh Bansal, Vin- cenzo Belcastro, (2007). How to infer gene networks from expression profiles. In: Molecular systems biology, 3.

K.-H. Cho, S.-M. Choo, S.H. Jung, J.-R. Kim, H.-S. Choi, and J. Kim, (2007). Reverse engineering of gene regulatory networks. In: Systems Biology, IET, 1(3):149–163. http://dx.doi.org/10.1049/iet-syb:20060075

Feng He, Rudi Balling, and An-Ping Zeng, (2009). Reverse engineering and verification of gene networks: Principles, assumptions, and limitations of present methods and future perspectives. In: Journal of Biotechnology, Press, Corrected Proof. http://dx.doi.org/10.1016/j.jbiotec.2009.07.013

Valdimir Filkov, (2005). Identifying gene regulatory networks from gene expres- sion data. Handbook of Computational Molecular Biology, Handbook of Computational Molecular Biology. http://dx.doi.org/10.1201/9781420036275.ch27

K. Numata, S. Imoto, and S. Miyano, (2007). A structure learning algorithm for inference of gene networks from microarray gene expression data using bayesian networks. In: Bioinformatics and Bioengineering. BIBE 2007. Proceedings of the 7th IEEE International Conference, pp. 1280–1284. http://dx.doi.org/10.1109/bibe.2007.4375731

Gui xia Liu, Wei Feng, Han Wang, Lei Liu, and Chun guang Zhou, (2009). Reconstruction of gene regulatory networks based on two-stage bayesian network structure learning algorithm. In: Journal of Bionic Engineering, 6 (1):86 – 92.

Zhihua Du, Yiwei Wang, and Zhen Ji, (2009). A new structure learning method for constructing gene networks. In: Bioinformatics and Biomedical en gineering, 2009. ICBBE 2009. 3rd International Conference, pp 1–4. http://dx.doi.org/10.1109/icbbe.2009.5162203

Cedric Auliac, Vincent Frouin, Xavier Gidrol, and Florence d'Alche Buc, (2008). Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset. In: BMC Bioinformatics, 9(1):91. http://dx.doi.org/10.1186/1471-2105-9-91

Xue wen Chen, Gopalakrishna Anantha, and Xinkun Wang, (2006). An effective structure learning method for constructing gene networks. In: Bioinformatics, 22(11):1367–1374.

Dana Pe'er, (2003). From gene expression to molecular path ways. Ph.D. thesis, the Hebrew University.

Alexander J. Hartemink, David K. Gifford, Tommi S. Jaakkola, and Richard A. Young, (2002). Bayesian methods for elucidating genetic regulatory networks. In: IEEE Intelligent Systems, 17(2):37–43.

Alexander John Hartemink, (2001). Principled Computational Methods for the Validation and Discovery of Genetic Regulatory Networks. PhD the- sis, Massachusetts institute of technology.

Amira Djebbari and John Quackenbush, (2008). Seeded bayesian networks: Con- structing genetic networks from microarray data. In: BMC Systems Biology, 2(1):57. http://dx.doi.org/10.1186/1752-0509-2-57

Chris Needham, Iain Manfield, Andrew Bulpitt, Philip Gilmartin, and David Westhead, (2009). From gene expression to gene regulatory networks in arabidopsis thaliana. In: BMC Systems Biology, 3(1):85. http://dx.doi.org/10.1186/1752-0509-3-85

Chris J. Needham, James R. Bradford, Andrew J. Bulpitt, and David R. Westhead, (2007). A primer on learning in bayesian networks for computational biology. In: PLoS Comput Biol, 3(8):129. http://dx.doi.org/10.1371/journal.pcbi.0030129

Dana Pe'er, (2005). Bayesian network analysis of signaling networks: A primer. Sci. STKE, 2005(281):pl4. http://dx.doi.org/10.1126/stke.2812005pl4

Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan, (2005). Causal protein-signaling networks derived from mul- tiparameter single-cell data. In: Science, 308(5721):523–529. http://dx.doi.org/10.1126/science.1105809

Gregory F. Cooper and Edward Herskovits, (1992). A bayesian method for the induction of probabilistic networks from data. In: Machine Learning 9, Number 4:309–347. http://dx.doi.org/10.1007/BF00994110

David Heckerman, (1995). A tutorial on learning with bayesian networks. In: Technical report, Microsoft Research.

Finn V. Jensen and Thomas D. Nielsen, (2007). Bayesian Networks and Deci- sion Graphs. Springer Science + Business Media, LLC.

Richard E. Neapolitan, (2003). Learning Bayesian Networks. Prentice Hall; illustrated edition.

Dan Geiger David M. Chickering and David Heckerman, (1994). Learning bayesian networks: is NP-Hard. In: Technical report, Microsoft Research.

Luis M. de Campos, (2006). A scoring function for learning bayesian networks based on mutual information and conditional independence tests. In: The Journal of Machine Learning Research, 7:2149– 2187.

David Maxwell Chickering, (2002). Learning equivalence classes of bayesian network structures. In: The Journal of Machine Learning Research, 2:445– 498.

Jorge Muruzabal and Carlos Cotta, (2004). A primer on the evolution of equiv- alence classes of bayesian network structures, volume 3242, pages 612–621.

Adamo L. de Santana, Carlos R. Frances, Claudio A. Rocha, Solon V. Carvalho, Nandamudi L. Vijaykumar, Liviane P. Rego, and Joao C. Costa, (2007). Strategies for improving the modeling and interpretability of bayesian networks. In: Data & Knowledge Engineering, 63(1):91–107. Data Warehouse and Knowledge Discovery (DAWAK'05), 7th International Congress on Data Warehouse and Knowledge Discovery (DAWAK'05). http://dx.doi.org/10.1016/j.datak.2006.10.005

S.N. Sivanandam and S.N. Deepa, (2007). Introduction to Genetic Algorithms. Springer-Verlag, 1st edition.

Pedro Larra-aga, Mikel Poza, Yosu Yurramendi, Roberto H. Murga, and Cindy M.H. Kuijpers, (1996). Structure learning of Bayesian networks by genetic algorithms: A performance analysis of control parameters. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9):912–926. http://dx.doi.org/10.1109/34.537345

Man Leung Wong and Kwong Sak Leung, (2004). An efficient data mining method for learning bayesian networks using an evolutionary algorithm- based hybrid approach. Evolutionary Computation, In: IEEE Transactions on, 8(4):378–404.

Marco Dorigo and Thomas Stutzle, (2004). Ant colony Optimization. Massachusetts Institute of Technology.

Luis M. de Campos, Juan M. Fernández-Luna, José A. Gamez, and José M. Puerta, (2002). Ant colony optimization for learning Bayesian networks. In: International Journal of Approximate Reasoning, 31(3):291 – 311. http://dx.doi.org/10.1016/S0888-613X(02)00091-9

Jun-Zhong J.I., Hong-Xun ZHANG, Ren-Bing HU, and Chun-Nian LIU, (2009). A bayesian network learning algorithm based on independence test and ant colony optimization. In: Acta Automática Sinica, 35(3):281 – 288.

Pablo A.D. Castro and Fernando J. Von Zuben, (2005). An immune inspired approach to Bayesian networks. In: HIS'05: Proceedings of the Fifth International Conference on Hybrid Intelligent Systems, pages 23–28. Washington: IEEE Computer Society. http://dx.doi.org/10.1109/ICHIS.2005.22

Laura E. Brown Ioannis Tsamardinos and Constantin F. Aliferis, (2006). The max-min hill-climbing bayesian network structure learning algorithm. Machine Learning, 65(1):31–78. http://dx.doi.org/10.1007/s10994-006-6889-7

Licheng Jiao and Lei Wang, (2000). A novel genetic algorithm based on im- munity. Systems, Man and Cybernetics, Part A: Systems and Humans. In: IEEE Transactions, 30(5):552–561.

Zne-Jung Lee, Chou-Yuan Lee, and Shun-Feng Su, (2002). An immunity-based ant colony optimization algorithm for solving weapon target assignment problem. Applied Soft Computing, 2(1):39 – 47. http://dx.doi.org/10.1016/S1568-4946(02)00027-3

Chui-Yu Chiu, I-Ting Kuo, and Chia-Hao Lin, (2009). Applying artificial immune system and ant algorithm in airconditioner market segmentation. In: Expert Systems with Applications 36(3, Part 1):4437 – 4442.

Xianjin Fang and Longshu Li, (2008). An artificial immune model with vaccine operator for network intrusion detection. In Computational Intelligence and Industrial Application. PACIIA'08. Pacific-Asia Workshop, volume 1, pp. 488–491. http://dx.doi.org/10.1109/paciia.2008.66

P.C. Pinto, A. Nagele, M. Dejori, T.A. Runkler, and J.M.C. Sousa, (2009). Using a local discovery ant algorithm for Bayesian network structure learning. Evolutionary Computation. In: IEEE Transactions, 13(4):767–779. http://dx.doi.org/10.1109/tevc.2009.2024142

Paul Munteanu and Denis Cau, (2000). Efficient score based learning of equiv- alence classes of bayesian networks. In PKDD '00: Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery, pp. 96–105. London: Springer-Verlag. http://dx.doi.org/10.1007/3-540-45372-5_10

P. Munteanu and M. Bendou, (2001). The eq framework for learning equivalence classes of bayesian networks. In: Data mining. ICDM 2001, Proceedings IEEE International Conference, pages 417–424. http://dx.doi.org/10.1109/icdm.2001.989547

Silva Acid and Luis M. de Campos, (2003). Searching for bayesian network structures in the space of restricted acyclic partially directed graphs. In: Journal of Artificial Intelligence Research, 18:445–490.

Steven Gillispie Department and Steven B. Gillispie, (2001). Enumerating markov equivalence classes of acyclic digraph models. In: Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 171–177. Morgan Kaufmann.

Steven B. Gillispie and Michael D. Perlman, (2002). The size distribution for markov equivalence classes of acyclic digraph models. Artificial Intelligence, 141(1-2):137–155. http://dx.doi.org/10.1016/S0004-3702(02)00264-3

Steven B. Gillispie, (2006). Formulas for counting acyclic digraph markov equiv- alence classes. In: Journal of Statistical Planning and Inference, 136(4):1410–1432. http://dx.doi.org/10.1016/j.jspi.2004.10.007

Ronan Daly, Qiang Shen, and Stuart Aitken, (2006). Using ant colony optimi- sation in learning bayesian network equivalence classes. Proceedings of the 2006 UK Workshop on Computational Intelligence, pages 111–118.

Haiyang Jia, Dayou Liu, Juan Chen, and Xin Liu, (2007). A hybrid approach for learning markov equivalence classes of bayesian network. In: KSEM, pp. 611–616. http://dx.doi.org/10.1007/978-3-540-76719-0_67

Haiyang Jia, Dayou Liu, Juan Chen, and Jinghua Guan, (2008). Learning markov equivalence classes of bayesian network with immune genetic al- gorithm. In: Industrial Electronics and Applications. ICIEA 2008. 3rd IEEE Conference, pp.197–202.

Ronan Daly and Qiang Shen, (2009). Learning bayesian network equivalence classes with ant colony optimization. Artificial Intelligence Research, 35:391–447.

Shen Q. & Aitken-S Daly, R. (2006). Speeding up the learning of equivalence classes of bayesian network structures. In Proceedings of the Tenth IAST- ED International Conference on Artificial Intelligence and Soft Computing, pp.34–39.

Cómo citar
Cardozo Ojeda, E. F., & Arguello Fuentes, H. (2011). Aprendizaje estructural de redes bayesianas: Un enfoque basado en puntaje y búsqueda. Ciencia E Ingeniería Neogranadina, 21(1), 29–50. https://doi.org/10.18359/rcin.269
Publicado
2011-06-01
Sección
Artículos

Métricas

QR Code