Hormigón de alta resistencia con agregados naturales, humo de sílice y macrofibras de polipropileno

Palabras clave: hormigón reforzado con fibra, macrofibras de polipropileno, humo de sílice, agregado grueso

Resumen

El uso de hormigón con macrofibras de polipropileno puede reducir la fragilidad y la contracción de las mezclas de humo de sílice. En el presente estudio, se investiga el efecto que tienen los humos de sílice y los agregados en la mejora del hormigón de alto desempeño con macrofibras de polipropileno. Se evaluaron tres dosis de macrofibras de polipropileno (fracción de volumen de 0.39 %, 0.63 % y 0.79 %), incluido el humo de sílice (0.0 % y 7.0 % de agua-cemento), para dos tipos de agregado grueso (piedra caliza y grava de río) con dos tamaños nominales máximos. En total, 96 probetas de concreto se sometieron a pruebas de compresión y flexión para evaluar el efecto de la adición de fibra, humo de sílice y diferentes tipos de agregados. Los resultados mostraron una resistencia a la compresión entre 36 MPa y 71 MPa, y una resistencia a la flexión de 3.6 MPa a 5.8 MPa, lo que indica un concreto de alto desempeño. El trabajo demuestra que es posible conseguir un hormigón de alta resistencia con macrofibras de polipropileno de 55 mm combinadas con humos de sílice y agregados naturales tanto de tipo calizo como calcáreo, lo que resulta beneficioso para la producción local de hormigón de alto desempeño.

Biografía del autor/a

Ramón Torres-Ortega, Universidad de Cartagena

M.Sc. en Ingeniería de Vías Terrestres, Universidad del Cauca. Profesor Titular, Universidad de Cartagena, Colombia.

Edgar Quiñonez-Bolaños, Universidad de Cartagena

Ph.D. en Ingeniería Ambiental, University of Guelph. Profesor titular, Universidad de Cartagena. Colombia

Candelaria Tejada-Tovar, Universidad de Cartagena
Candelaria Tejada Tovar M.sc. en  Ingeniería Ambiental M.sc. en Educación Docente investigadora, Grupo IDAB  Investigación en diseño de procesos y aprovechamiento de biomasas Profesor Titular Programa de Ingeniería Química-Universidad de Cartagena Docente investigador asociado COLCIENCIAS orcid.org/0000-0002-2323-1544
Scopus Author ID: 56694431900 http://scholar.google.com/citations?user=z4t0YFcAAAAJ&hl=es
Yineth García-Díaz, Universidad de Cartagena

M.Sc. in Materials Engineering. Universidad de Cartagena, Cartagena, Colombia.

Ibeth Cabarcas-Torres, Universidad de Cartagena

B.Sc. in Civil Engineering. Universidad de Cartagena, Cartagena, Colombia. E-mail: icabarcast1@unicarta- gena.edu.co orcid: http://orcid.org/ 0000-0001-7903-5692

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ramón Torres-Ortega, Universidad de Cartagena

M.Sc. en Ingeniería de Vías Terrestres, Universidad del Cauca. Profesor Titular, Universidad de Cartagena, Colombia.

Edgar Quiñonez-Bolaños, Universidad de Cartagena

Ph.D. en Ingeniería Ambiental, University of Guelph. Profesor titular, Universidad de Cartagena. Colombia

Candelaria Tejada-Tovar, Universidad de Cartagena
Candelaria Tejada Tovar M.sc. en  Ingeniería Ambiental M.sc. en Educación Docente investigadora, Grupo IDAB  Investigación en diseño de procesos y aprovechamiento de biomasas Profesor Titular Programa de Ingeniería Química-Universidad de Cartagena Docente investigador asociado COLCIENCIAS orcid.org/0000-0002-2323-1544
Scopus Author ID: 56694431900 http://scholar.google.com/citations?user=z4t0YFcAAAAJ&hl=es
Yineth García-Díaz, Universidad de Cartagena

M.Sc. in Materials Engineering. Universidad de Cartagena, Cartagena, Colombia.

Ibeth Cabarcas-Torres, Universidad de Cartagena

B.Sc. in Civil Engineering. Universidad de Cartagena, Cartagena, Colombia. E-mail: icabarcast1@unicarta- gena.edu.co orcid: http://orcid.org/ 0000-0001-7903-5692

Referencias bibliográficas

B. Price, High strength concrete. Woodhead Publishing Limited, 2003. doi: https://doi.org/10.1016/B978-075065686-3/50289-5

F. Sorrentino, "Chemistry and engineering of the production process: State of the art," Cem. Concr. Res., vol. 41, no. 7, pp. 616-623, 2011, doi: https://doi.org/10.1016/j.cemconres.2011.03.013

P.-C. Nkinamubanzi, S. Mantellato, and R. J. Flatt, "Superplasticizers in practice," Sci. Technol. Concr. Admixtures, pp. 353-377, Jan. 2016, doi: https://doi.org/10.1016/B978-0-08-100693-1.00016-3

M. I. Khan, Y. M. Abbas, and G. Fares, "Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines," J. King Saud Univ. Eng. Sci., vol. 29, no. 4, pp. 339-347, 2017, doi: https://doi.org/10.1016/j.jksues.2017.03.006

R. Reju and G. Jiji Jacob, "Investigations on the chemical durability properties of Ultra High Performance Fibre Reinforced Concrete," in 2012 Int. Conf. Green Technologies (ICGT), Dec. 2012, pp. 181-185, doi: https://doi.org/10.1109/ICGT.2012.6477969

E. J. M. Castil and N. C. Tarranza, "Producing High Strength Hollow Core Reinforced Concrete Slab with Silica Fume and Polypropylene Fibers," Mater. Sci. Forum, vol. 866, no. 1, pp. 143-147, 2016, doi: https://doi.org/10.4028/www.scientific.net/MSF.866.143

M. Nili and V. Afroughsabet, "The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete," Constr. Build. Mater., vol. 24, pp. 927-933, 2009, doi: https://doi.org/10.1016/j.conbuildmat.2009.11.025

M. M. Ahmed, "Study on durability properties of concrete using silica fume with addition of polypropylene fibre," vol. 3, no. 11, pp. 21-25, 2017.

N. Flores Medina, G. Barluenga, and F. Hernández-Olivares, "Combined effect of Polypropylene fibers and Silica Fume to improve the durability of concrete with natural Pozzolans blended cement," Constr. Build. Mater., vol. 96, pp. 556-566, Oct. 2015, doi: https://doi.org/10.1016/j.conbuildmat.2015.08.050

H. W. Wang, "Effect of Polypropylene Fiber on Strength and Flexural Properties of Concrete Containing Silica Fume," Adv. Mater. Res., vol. 346, pp. 30-33, 2011, doi: https://doi.org/10.4028/www.scientific.net/AMR.346.30

H. A. Toutanji, "Properties of polypropylene fiber reinforced silica fume expansive-cement concrete," Constr. Build. Mater., vol. 13, no. 4, pp. 171-177, Jun. 1999, doi: https://doi.org/10.1016/S0950-0618(99)00027-6

S. Fallah and M. Nematzadeh, "Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume," Constr. Build. Mater., vol. 132, pp. 170-187, Feb. 2017, doi: https://doi.org/10.1016/j.conbuildmat.2016.11.100

C.-G. Park and J.-W. Lee, "Effect of nanosilica and silica fume content on the bond properties of macro-synthetic fibre in cement-based composites," Mag. Concr. Res., vol. 65, no. 3, pp. 148-157, 2013, doi: https://doi.org/10.1680/macr.12.00036

F. Kö Ksal, F. Altun, I. Yig ˘it C, Y. ßa, and S. ßahin, "Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes," Constr. Build. Mater., vol. 22, no. 8, pp. 1874-1880, 2008, doi: https://doi.org/10.1016/j.conbuildmat.2007.04.017

M. Ghahremannejad, M. Mahdavi, A. E. Saleh, S. Abhaee, and A. Abolmaali, "Experimental investigation and identification of single and multiple cracks in synthetic fiber concrete beams," Case Stud. Constr. Mater., vol. 9, p. e00182, 2018, doi: https://doi.org/10.1016/j.cscm.2018.e00182

M. Alhassan, R. Al-Rousan, and A. Ababneh, "Flexural behavior of lightweight concrete beams encompassing various dosages of macro synthetic fibers and steel ratios," Case Stud. Constr. Mater., vol. 7, no. July, pp. 280-293, 2017, doi: https://doi.org/10.1016/j.cscm.2017.09.004

S. Yin, R. Tuladhar, F. Shi, M. Combe, T. Collister, and N. Sivakugan, "Use of macro plastic fibres in concrete: A review," Constr. Build. Mater., vol. 93, pp. 180-188, Sep. 2015, doi: https://doi.org/10.1016/j.conbuildmat.2015.05.105

Z. Ming, "Double-K fracture analysis on polypropylene fiber reinforced concrete beams with standard three-point bending," in 2011 International Conference on Electric Technology and Civil Engineering (ICETCE), Apr. 2011, pp. 242-245, doi: https://doi.org/10.1109/ICETCE.2011.5774387

O. Karahan and C. D. Atiş, "The durability properties of polypropylene fiber reinforced fly ash concrete," Mater. Des., vol. 32, no. 2, pp. 1044-1049, 2011, doi: https://doi.org/10.1016/j.matdes.2010.07.011

V. C. Li and H. Stang, "Interface property characterization and strengthening mechanisms in fiber reinforced cement based composites," Adv. Cem. Based Mater., vol. 6, no. 1, pp. 1-20, Jun. 1997, doi: https://doi.org/10.1016/S1065-7355(97)90001-8

Z. Sun and Q. Xu, "Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete," Mater. Sci. Eng. A, vol. 527, no. 1-2, pp. 198-204, 2009, doi: https://doi.org/10.1016/j.msea.2009.07.056

D.-Y. Yoo and N. Banthia, "Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review," Cem. Concr. Compos., vol. 73, pp. 267-280, Oct. 2016, doi: https://doi.org/10.1016/j.cemconcomp.2016.08.001

Y. Choi and R. L. Yuan, "Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC," Cem. Concr. Res., vol. 35, no. 8, pp. 1587-1591, 2005, doi: https://doi.org/10.1016/j.cemconres.2004.09.010

V. M. de Alencar Monteiro, L. R. Lima, and F. de Andrade Silva, "On the mechanical behavior of polypropylene, steel and hybrid fiber reinforced self-consolidating concrete," Constr. Build. Mater., vol. 188, pp. 280-291, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.08.103

L. G. Li, S. H. Chu, K. L. Zeng, J. Zhu, and A. K. H. Kwan, "Roles of water film thickness and fibre factor in workability of polypropylene fibre reinforced mortar," Cem. Concr. Compos., vol. 93, pp. 196-204, 2018, doi: https://doi.org/10.1016/j.cemconcomp.2018.07.014

P. Fidjestøl and R. Lewis, "Microsilica as an Addition," Lea's Chem. Cem. Concr., pp. 679-712, Jan. 1998, doi: https://doi.org/10.1016/B978-075066256-7/50024-2

ASTM, ASTM C1157 / C1157M - 17 Standard Performance Specification for Hydraulic Cement. 2017.

ASTM, ASTM C39 / C39M - 18 Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

ASTM, ASTM C78 - 02 Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). 2002.

ASTM, ASTM C192 / C192M - 18 Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. 2018.

ASTM, ASTM C143 / C143M - 15a Standard Test Method for Slump of Hydraulic-Cement Concrete. 2015.

M. A. da Silva, M. Pepe, R. G. M. de Andrade, M. S. Pfeil, and R. D. Toledo Filho, "Rheological and mechanical behavior of High Strength Steel Fiber-River Gravel Self Compacting Concrete," Constr. Build. Mater., vol. 150, pp. 606-618, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.06.030

S. Chithra, S. R. R. Senthil Kumar, and K. Chinnaraju, "The effect of Colloidal Nano-silica on workability, mechanical and durability properties of High Performance Concrete with Copper slag as partial fine aggregate," Constr. Build. Mater., vol. 113, pp. 794-804, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.03.119

X. Liu, K. S. Chia, and M.-H. Zhang, "Water absorption, permeability, and resistance to chloride-ion penetration of lightweight aggregate concrete," Constr. Build. Mater., vol. 25, no. 1, pp. 335-343, Jan. 2011, doi: https://doi.org/10.1016/j.conbuildmat.2010.06.020

M. J. Hasan, M. Afroz, and H. M. I. Mahmud, "An Experimental Investigation on Mechanical Behavior of Macro Synthetic Fiber Reinforced Concrete," 2011.

O. Gencel, C. Ozel, W. Brostow, and G. Martínez-Barrera, "Mechanical properties of self-compacting concrete reinforced with polypropylene fibres," Mater. Res. Innov., vol. 15, no. 3, pp. 216-225, 2011, doi: https://doi.org/10.1179/143307511X13018917925900

H. Yan, W. Sun, and H. Chen, "The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete," 1999. doi: https://doi.org/10.1016/S0008-8846(98)00235-X

D.-Y. Yoo, S. Kim, G.-J. Park, J.-J. Park, and S.-W. Kim, "Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites," Compos. Struct., vol. 174, pp. 375-388, Aug. 2017, doi: https://doi.org/10.1016/j.compstruct.2017.04.069

Cómo citar
Torres-Ortega, R., Quiñonez-Bolaños, E., Tejada-Tovar, C., García-Díaz, Y., & Cabarcas-Torres, I. (2021). Hormigón de alta resistencia con agregados naturales, humo de sílice y macrofibras de polipropileno. Ciencia E Ingeniería Neogranadina, 31(2), 27–40. https://doi.org/10.18359/rcin.4394
Publicado
2021-12-31
Sección
Artículos

Métricas

QR Code