Algoritmo para planear trayectorias de robots móviles, empleando campos potenciales y enjambres de partículas activas brownianas

  • Helbert Eduardo Espitia Cuchango Universidad Distrital Francisco José de Caldas
  • Jorge Iván Sofrony Esmeral Universidad Nacional de Colombia
Palabras clave: robótica móvil, planeación de trayectorias, partículas activas brownianas

Resumen

En este documento se presenta la propuesta de un algoritmo para planear trayectorias, empleando un modelo de partículas activas brownianas. Existen varios métodos para planear trayectorias en robótica móvil, y uno de los más populares es el basado en campos potenciales artificiales; sin embargo, este método tiene la desventaja de presentar mínimos locales lo cual puede hacer que el robot no logre llegar al punto destino. Aunque ya se han realizado aplicaciones de enjambres de partículas para evadir mínimos locales, en la propuesta aquí presentada, se busca emplear un modelo compacto que permita planear la trayectoria, evadiendo mínimos locales.

Biografía del autor/a

Helbert Eduardo Espitia Cuchango, Universidad Distrital Francisco José de Caldas

Ing. Electrónico, Mecatrónico, Esp, Mag., Profesor Asistente
Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

Jorge Iván Sofrony Esmeral, Universidad Nacional de Colombia

Ing. Eléctrico, MSc, PhD., Profesor Asistente Universidad Nacional de Colombia, Bogotá, Colombia

Descargas

Los datos de descargas todavía no están disponibles.

Lenguajes:

es

Biografía del autor/a

Helbert Eduardo Espitia Cuchango, Universidad Distrital Francisco José de Caldas

Ing. Electrónico, Mecatrónico, Esp, Mag., Profesor Asistente
Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

Jorge Iván Sofrony Esmeral, Universidad Nacional de Colombia

Ing. Eléctrico, MSc, PhD., Profesor Asistente Universidad Nacional de Colombia, Bogotá, Colombia

Referencias bibliográficas

Udo Erdmann, Werner Ebeling, Schimansky-Geier Lutz, Ordemann Anke, and Moss Frank, (2008). Active brownian particle and random walk theories of the motions of zooplankton: application to experiments with swarms of daphnia. In: Journal of Theoretical Biology 9.

Hsin Ya-Chieh, (2006). Emergence of vortex swarming in daphnia. Term Paper for Emergent State of Matter, Spring.

Werner Ebeling, (2002). Nonequilibrium statistical mechanics of swarms of driven particles. Elsevier: Physica A. http://dx.doi.org/10.1016/S0378-4371(02)01159-7

Levine Herbert, Rappel Wouter-Jan, and Cohen Inon, (2000). Self-organization in systems of self-propelled particles. In: Physical Review E 63.

D'Orsogna M.R., Chuang Y.L., Bertozzi A.L., and Chayes L.S., (2006). Self-propelled particles with soft-core interactions: patterns, stability, and collapse. In: Physical Review Letters, PRL 96. http://dx.doi.org/10.1103/physrevlett.96.104302

Werner Ebeling, and Udo Erdmann, (2002). Nonequilibrium Statistical Mechanics of Swarms of Driven Particles. In: Physica A: Statistical Mechanics and its Applications, Vol. 314, Issues 1-4, pp. 92-96. http://dx.doi.org/10.1016/S0378-4371(02)01159-7

Udo Erdmann, Werner Ebeling, and Alexander S. Mikhailov, (2005). Noise-Induced Transition from Translational to Rotational Motion of Swarms. In: Physical Review E. http://dx.doi.org/10.1103/physreve.71.051904

Abdel Wahid M.H.M., and McInnes Colin R., (2008). Wall following to escape local minima for swarms of agents using internal states and emergent behavior. International Conference of Computational Intelligence and Intelligent Systems ICCIIS.

Gómez-Bravo F., Cuesta F., y Ollero Baturone Aníbal, (2003). Planificación de trayectorias en robots móviles basada en técnicas de control de sistemas no holónomos. XXIV Jornadas de Automática.

Ollero Baturone Aníbal, (2001). Robótica Manipuladores y robots móviles. Marcombo.

De Los Santos De La Rosa Erik Adolfo, (2004). Heurística para la generación de configuraciones en pasajes estrechos aplicada al problema de los clavos. Tesis de Maestría en Ciencias con Especialidad en Ingeniería en Sistemas Computacionales, Universidad de las Américas Puebla.

Khaled Belghith, Kabanza Froduald, Hartman Leo, and Nkambou Roger, (2006). Anytime Dynamic Path-Planning with Flexible Probabilistic Roadmaps Khaled Belghith. Proceedings IEEE International Conference on Robotics and Automation.

Bennewitz Maren, Burgard Wolfram, and Thrun Sebastian, (2002). Finding and Optimizing Solvable Priority Schemes for Decoupled Path Planning Techniques for Teams of Mobile Robots. In: Robotics and Autonomous Systems.

Poty A., Melchior P., and Oustaloup A., (2004). Dynamic Path Planning For Mobile Robots Using Fractional Potential Field. First International Symposium on Control, Communications and Signal Processing. http://dx.doi.org/10.1109/isccsp.2004.1296443

Tu Jianping, and Yangt Simon, (2003). Genetic Algorithm Based Path Planning for a Mobile Robot. Proceedings of the IEEE International Conference on Robotics & Automation. http://dx.doi.org/10.1109/robot.2003.1241759

Nilsson J. Nils, (1969). A Mobile Automaton: An Application of Artificial Intelligence Techiques. Proc. of the 1st. International Joint Conference on Artificial Intelligence.

Segovia Armando, and Rombaut Michkle, (1993). Path Finding from a Spot Image for a Mobile Robot. Intelligent Vehicles 93 Symposium.

Brooks Rodney A., (1983). Solving the Find-Path Problem by Good Representation of Free Space. IEEE Transactions on Sysyems Man and Cybernetics. http://dx.doi.org/10.1109/tsmc.1983.6313112

Lozano Peréz Tomás, (1983). Spatial planning: a configuration space approach. IEEE Transactions on computers.

Sleumer Nora H., and Tschichold Gürman Nadine, (1999). Exact Cell Decomposition of Arrangements used for Path Planning in Robotics. Swiss Federal Institute of Technology.

Barraquand Jérome, Langlois Bruno, and Latombe Jean-Claude, (1992). Numerical Potential Field Techniques for Robot Path Planning. IEEE Transactions on Systems, Man and Cybernetics.

Kavraki Lydia E., and Latombe Jean-Claude, (1998). Probablistic Roadmaps for Robot. In Practical Motion Planning in Robotics: Current Approaches and Future Directions, John Wiley.

Overmars Mark H., and Svestka Petr, (1994). A probabilistic learning approach to motion planning. Proceding in Workshop on Algorithmic Foundations of Robotics.

Lindemann Stephen R., and La Valle Steven M., (2004). Steps Toward Derandomizing RRTs. In: IEEE Fourth International Workshop on Robot Motion and Control. http://dx.doi.org/10.1109/romoco.2004.240739

Fujimori Atsushi, Nikiforuk Peter, and Gupta Madan, (1997). Adaptive Navigation of Mobile Robots with Obstacle Avoidance. IEEE Transactions on Robotics and Automation.

Gemeinder M., and Gerke M., (2003). GA-based Path Planning for Mobile Robot Systems Employing an Active Search Algorithm. Applied Soft Computing. http://dx.doi.org/10.1016/S1568-4946(03)00010-3

Liu Guan-Yu, and Wu Chia-Ju, (2001). A Discrete Method for Time-Optimal Motion Planning of a Class of Mobile Robots. In: Journal of Intelligent and Robotic Systems.

Xiao Jing, Michalewicz Zbigniew, Zhang Lixin, and Trojanowski Krzysztof, (1997). Adaptive Evolutionary Planner/Navigator for Robots. IEEE Transactions on Evolutionary Computation. http://dx.doi.org/10.1109/4235.585889

Porta García Miguel Ángel, (2007). Planeación de trayectorias para robótica móvil mediante optimización por colonia de hormigas. Tesis de Maestría en Ciencias en Sistemas Digitales, Instituto Politécnico Nacional, Tijuana, México.

Coelho Leandro dos Santos, and Sierakowski Cezar Augusto, (2006). Bacteria Colony Approaches With Variable Velocity Applied to Path Optimization of Mobile Robots. ABCM Symposium Series in Mechatronics, Vol. 2.

Sierakowski Cezar A., and Coelho Leandro dos Santos, (2005). Study of two swarm intelligence techniques for path planning of mobile robots. 16th IFAC World Congress, July.

Khatib O., (1986). Real-time obstacle avoidance for manipulators and mobile robots. In: International Journal of Robotic Research, Vol. 5 (1), 90p. http://dx.doi.org/10.1007/978-1-4613-8997-2_29

Krogh B., (1984). A generalized potential field approach to obstacle avoidance control. ASME Conference of Robotic Research: The Next Five Years and Beyond. Bethlehem, Pennsylvania.

Khosla P., and Volpe R., (1988). Superquadric artificial potentials for obstacle avoidance and approach. IEEE Internaitional Conference on Robotics and Automation., Philadelphia, April 26-28. http://dx.doi.org/10.1109/robot.1988.12323

Kim J.O., and Khosla P.K., (1991). Real-time obstacle avoidance using harmonic potential functions. IEEE Conference on Robotics and Automation, Sacramento, pp.790-796. http://dx.doi.org/10.1109/robot.1991.131683

Ge S.S., and Cui Y.J., (2000). New potential functions for mobile robot path planning. IEEE Transactions on Robotics and Automation, Vol. 16 (5), 615p. http://dx.doi.org/10.1109/70.880813

Connolly C.I., and Burns J.B., (1994). Path Planning using Laplace's equation. IEEE Conference on Robotics and Automation.

Rimon E., and Koditchek D.E., (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, Vol. 8 (5). http://dx.doi.org/10.1109/70.163777

Lee Leng-Feng, (2004). Decentralized motion planning within an artificial potential framework (APF) for cooperative payload transport by multi-robot collectives. Master Of Science Thesis, University of New York at Buffalo, December.

Prahlad Vadakkepat, Kay Chen Tan, and Wang Ming-Liang, (2000). Evolutionary Artificial Potential Fields and Their Application in Real Time Robot Path. Proceedings of the Congress on Evolutionary Computation. http://dx.doi.org/10.1109/cec.2000.870304

Xi-Yong Zou, and Jing Zhu, (2003). Virtual local target method for avoiding local minimum in potential field based robot navigation. In: Journal of Zhejiang University - Science A. http://dx.doi.org/10.1631/jzus.2003.0264

Chengqing Liu, Ang Marcelo, Krishnan Hariharan, and Yong Lim Ser, (2000). Virtual Obstacle Concept for Local-minimum-recovery in Potential-field Based Navigation. Proceedings of the IEEE International Conference on Robotics & Automation.

Mikhailov Alexander S., and Zanette Damián H., (1999). Noise-induced breakdown of coherent collective motion in swarms. In: Physical Review E 60:44, pp.4571-4575. http://dx.doi.org/10.1103/PhysRevE.60.4571

Arriaza Gómez A.J., Fernández Palacín F.M., López Sánchez A., Mu-oz Márquez M., Pérez Plaza S., y Sánchez Navas A., (2008). Estadística básica con R y R-Commander. Servicio de Publicaciones de la Universidad de Cádiz.

Cagnina Leticia Cecilia, (2010). Optimización mono y multiobjetivo a través de una heurística de inteligencia colectiva. Tesis de Doctorado en Ciencias de la Computación, Universidad Nacional de San Luis, Argentina.

Cómo citar
Espitia Cuchango, H. E., & Sofrony Esmeral, J. I. (2012). Algoritmo para planear trayectorias de robots móviles, empleando campos potenciales y enjambres de partículas activas brownianas. Ciencia E Ingeniería Neogranadina, 22(2), 75–96. https://doi.org/10.18359/rcin.242
Publicado
2012-12-01
Sección
Artículos

Métricas

QR Code