Reactores discontinuos secuenciales: Una tecnología versátil en el tratamiento de aguas residuales.

  • Juan Fernando Muñoz Paredes Universidad Militar Nueva Granada
  • Mauricio Ramos Ramos Universidad Mariana
Palabras clave: Nutrientes, reactor, eliminación, tecnología SBR.

Resumen

El interés en eliminar contaminantes de las aguas residuales se ha incrementado en los últimos años. Existe una constante búsqueda de nuevos y mejores diseños que permitan la implementación de sistemas de tratamiento confiables, de bajo costo y que ofrezcan mejores resultados. Esta tarea ha sido realmente un reto, debido a la generación de múltiples tipos de vertimientos líquidos, con diferentes características y composición y, en particular, al cumplimiento de estrictas y diferentes regulaciones que en los distintos países se establecen en materia de control ambiental. La investigación en el área de la ingeniería y las ciencias ambientales ha permitido el desarrollo de la tecnología de reactores discontinuos secuenciales (SBR, por sus siglas en inglés), como una variación del proceso de lodos activados convencional para la eliminación de materia orgánica y de nutrientes de las aguas residuales. El presente artículo de revisión describe la importancia de este tipo de sistemas, teniendo en cuenta las generalidades del tratamiento, la descripción técnica del sistema, los parámetros de operación más importantes, el mecanismo biológico del proceso de eliminación y las diferentes modificaciones al diseño original. Finalmente, se encontró que este tipo de sistema es de gran utilidad y ofrece muchas ventajas en la eliminación de nutrientes y materia orgánica, en comparación con los sistemas convencionales de tratamiento, además de que se puede aplicar para el tratamiento de gran cantidad y diversidad de aguas residuales tanto domésticas como industriales.

Biografía del autor/a

Juan Fernando Muñoz Paredes, Universidad Militar Nueva Granada
Ing. Químico, MSc. Ingeniería Ambiental, Docente Facultad de Posgrados y Relaciones Internacionales, Grupo de Investigación GIA. Universidad Mariana, Pasto, Colombia.
Mauricio Ramos Ramos, Universidad Mariana
Ing. Químico, MSc. Ciencias de la Ingeniería, Docente Facultad de Ingeniería, Maestría en Ingeniería Ambiental (En curso). Grupo de Investigación GIA. Universidad Mariana, Pasto, Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Lenguajes:

es

Biografía del autor/a

Juan Fernando Muñoz Paredes, Universidad Militar Nueva Granada
Ing. Químico, MSc. Ingeniería Ambiental, Docente Facultad de Posgrados y Relaciones Internacionales, Grupo de Investigación GIA. Universidad Mariana, Pasto, Colombia.
Mauricio Ramos Ramos, Universidad Mariana
Ing. Químico, MSc. Ciencias de la Ingeniería, Docente Facultad de Ingeniería, Maestría en Ingeniería Ambiental (En curso). Grupo de Investigación GIA. Universidad Mariana, Pasto, Colombia.

Referencias bibliográficas

Boaventura, K. M., Roqueiro, N., Coelho, M.A.Z. & Araújo, O.Q.F. (2001). State observers for a biological wastewater nitrogen removal process in a sequential batch reactor. Bioresource Technology, 79(1), pp. 1-14. http://dx.doi.org/10.1016/S0960-8524(01)00041-4

Carrera, J., Baeza, J., Vicent, T. & Lafuente, J. (2003). Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research, 37(17), pp. 4211-4221. http://dx.doi.org/10.1016/S0043-1354(03)00338-5

Carrera, J., Vicent, T. & Lafuente, J. (2004). Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochemistry, 39(12), pp. 2035-2041. http://dx.doi.org/10.1016/j.procbio.2003.10.005

Fernandez M., F.J. (2006). Efectos de vertidos industriales sobre la eliminación biológica de nutrientes de aguas residuales urbanas (Tesis doctoral inédita). Universidad de Castilla la Mancha, Ciudad Real, Espa-a. p. 383.

Akhbari, A., Zinatizadeh, A.A.L., Mohammadi, P., Irandoust, M. & Mansouri, Y. (2011). Process modeling and analysis of biological nutrients removal in an integrated RBC-AS system using response surface methodology. Chemical Engineering Journal, 168(1), pp. 269-279. http://dx.doi.org/10.1016/j.cej.2011.01.003

Li, J., Xing, X.H., & Wang, B.Z. (2003). Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor (SBR). Biochemical Engineering Journal, 16(3), pp. 279-285. http://dx.doi.org/10.1016/S1369-703X(03)00071-8

Rahimi, Y., Torabian, A., Mehrdadi, N. & Shahmoradi, B. (2011). Simultaneous nitrification–denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR). Journal of Hazardous Materials, 185(2–3), pp. 852-857. http://dx.doi.org/10.1016/j.jhazmat.2010.09.098

Di Iaconi, C., Lopez, A., Ramadori, R., Di Pinto, A.C. & Passino, R. (2002). Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water Research, 36(9), pp. 2205-2214. http://dx.doi.org/10.1016/S0043-1354(01)00445-6

Ge, S., Peng, Y., Wang, S., Guo, J., Ma, B., Zhang, L. & Cao, X. (2010). Enhanced nutrient removal in a modified step feed process treating municipal wastewater with different inflow distribution ratios and nutrient ratios. Bioresource Technology, 101(23), pp. 9012-9019.

http://dx.doi.org/10.1016/j.biortech.2010.06.151

Mata-Alvarez, J., Obaja, D., Macé, S., Costa, J. & Sans, C. (2003). Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technology, 87(1), pp. 103-111. http://dx.doi.org/10.1016/S0960-8524(02)00229-8

Akın, B. S. & Ugurlu, A. (2005). Monitoring and control of biological nutrient removal in a Sequencing Batch Reactor. Process Biochemistry, 40(8), pp. 2873-2878. http://dx.doi.org/10.1016/j.procbio.2005.01.001

Dautan, R., Pérez, M.L., Contreras, A., Marzana, A. & Rincones, B. (noviembre, 1988). Dise-o y construcción de un reactor discontinuo secuencial para remoción de DBO. Ponencia presentada en el XXVI Congreso Interamericano de Ingeniería Sanitaria y Ambiental, Lima, Perú.

Cárdenas, C., Perruolo, T., Tarre, Y., Flores, K., Trujillo, A., Saules, L., Araujo, I. & Yabroudi, S. (2006). Remoción de nutrientes en un reactor discontinuo secuencial. Interciencia, 31(11), pp. 787-793.

Tchobanoglous, G. & Crites, R. (2003). Tratamiento de Aguas Residuales en peque-as poblaciones. Bogotá, Colombia: Mc Graw Hill.

Casellas, M., Dagot, C. & Baudu, M. (2006). Set up and assessment of a control strategy in a SBR in order to enhance nitrogen and phosphorus removal. Process Biochemistry, 41(9), pp. 1994-2001. http://dx.doi.org/10.1016/j.procbio.2006.04.012

Arun, V, Mino. T. & Mastsuo, T. (1988). Biological mechanism of acetate uptake mediated by carbohydrate consumption in excess phosphorus removal systems. Water Research, 22 (5), pp. 565-570. http://dx.doi.org/10.1016/0043-1354(88)90056-5

Mohan, S.V., Rao, N.C., Prasad, K.K., Madhavi, B.T.V. & Sharma, P.N. (2005). Treatment of complex chemical wastewater in a sequencing batch reactor (SBR) with an aerobic suspended growth configuration. Process Biochemistry, 40(5), pp. 1501-1508. http://dx.doi.org/10.1016/j.procbio.2003.02.001

Zhang, Z., Zhu, J., King, J. & Li, W. (2006). A two-step fed SBR for treating swine manure. Process Biochemistry, 41(4), pp. 892-900. http://dx.doi.org/10.1016/j.procbio.2005.11.005

Uygur, A. (2006). Specific nutrient removal rates in saline wastewater treatment using sequencing batch reactor. Process Biochemistry, 41(1), pp. 61-66. http://dx.doi.org/10.1016/j.procbio.2005.03.068

Mohan, S.V., Rao, N.C., & Sarma, P.N. (2007). Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR). Journal of Hazardous Materials, 144(1–2), pp. 108-117. http://dx.doi.org/10.1016/j.jhazmat.2006.09.090

Pavšelj, N., Hvala, N., Kocijan, J., Roš, M., Šubelj, M., Mušič, G. & Strmčnik, S. (2001). Experimental design of an optimal phase duration control strategy used in batch biological wastewater treatment. ISA Transactions, 40(1), pp. 41-56. http://dx.doi.org/10.1016/S0019-0578(00)00042-2

Kishida, N., Kim, J.H., Chen, M., Sasaki, H. & Sudo, R. (2003). Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. Journal of Bioscience and Bioengineering, 96(3), pp. 285-290. http://dx.doi.org/10.1016/S1389-1723(03)80195-0

Andreottola, G, Foladori, P, Ragazzi, M. (2000). On-line control of a SBR system for nitrogen removal from industrial wastewater. Proceedings of the second international symposium on SBR technology, pp. 154–62.

Castelló E., Barcia R., Passeggi M., López. & Borzaccioni L. (noviembre, 2006). Dise-o , arranque y operación de reactor en secuencia batch a escala piloto para tratamiento de aguas. Ponencia presentada en el XXX Congreso Interamericano de Ingeniería Sanitaria y Ambiental. Punta del Este, Uruguay.

Fu, Z., Yang, F., An, Y. & Xue, Y. (2009). Simultaneous nitrification and denitrification coupled with phosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR). Biochemical Engineering Journal, 43(2), pp. 191-196. http://dx.doi.org/10.1016/j.bej.2008.09.021

Wilderer, P.A. & McSwain, B.S. (2004). The SBR and its biofilm application potentials. Water Science and Technology, 50(10), pp. 1-10.

Rittmann, B.E. & Langeland, W.E. (1985). Simultaneous denitrification with nitrification in single-channel oxidation ditches. Journal of Water Pollution Control Fed. 57, pp. 300–308.

Rodgers, M. & Zhan, X.-M. (2004). Biological nitrogen removal using a vertically moving biofilm system. Bioresource Technology, 93(3), pp. 313-319. http://dx.doi.org/10.1016/j.biortech.2003.09.017

Rittman, B.E. & McCarty P.L. (Eds.). (2002) Environmental Biotechnology: Principles and Applications. Beijing, China: Tsinghua University Press, pp. 209–260.

Broch, P.S. (2008). Operación y control de un proceso SBR para la remoción biológica mejorada de nutrientes de un agua residual. Universidad de Girona.

Puig S., Vives M.T., Corominas L., Balaguer M.D. & Colprim, J. (2004). Wastewater nitrogen removal in SBRs, applying a step-feed strategy: from lab-scale to pilot-plant operation. Water Science Technology, 50(10), pp. 89-96.

Metcalf & Eddy. (2003). Wastewater engineering: treatment and reuse. Nueva York, NY, EE.UU.: Mc Graw Hill.

Singh, M. & Srivastava, R.K. (2011). Sequencing batch reactor technology for biological wastewater treatment. Asia Pacific Journal of Chemical Engineering, 6(1), pp. 3–13. http://dx.doi.org/10.1002/apj.490

Stricker, A. & Béland, M. (2006). Sequencing batch reactor versus continuos flow process for pilot plant research on activated sludge. Water Environment Foundation, pp. 7046-7056.

Romero Rojas, J.A. (2004). Tratamiento de aguas residuales. Bogotá, Colombia: Escuela Colombiana de Ingeniería. p. 1197.

Yang, S., Yang, F., Fu, Z., Wang, T. & Lei, R. (2010). Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. Journal of Hazardous Materials, 175(1–3), pp. 551-557. http://dx.doi.org/10.1016/j.jhazmat.2009.10.040

Wang, L.K., Shammas, N.K., & Hung, Y.T. (2009). Advanced Biological Treatment Processes. New York. Humana Pre. http://dx.doi.org/10.1007/978-1-60327-170-7

Atlas R. & Barttha, R. (2002). Ecología microbiana y Microbiología ambiental. Madrid, Espa-a: Pearson Educación S.A.

Focht, D. (1982). Denitrification. En Burns R. & Slater J. (Eds.). Experimental Microbial Ecology. Oxford, Inglaterra: Blackwell Science.

Mahvi, A.H. (2008). Sequencing batch reactor: a promising technology in wastewater treatment. Journal of Environmental Health, Science Engineering, 5(2), pp. 79–90.

Scaler, M. I. & Mujeriego, R. (2001). Eliminación Biológica de Nutrientes (Nitrógeno y Fósforo) Mediante un Proceso Discontinuo de Fangos Activados. Ingeniería Del Agua, 8, pp. 67-78. http://dx.doi.org/10.4995/ia.2001.2860

Tchobanoglous, G., Burton, F.L. & Stensel, H.D. (2003). Wastewater Engineering: Treatment and Reuse. Nueva York, NY, EE.UU: McGraw Hill.

Cui, Y., Wang, S. & Li, J. (2009). On-line Monitoring for Phosphorus Removal Process and Bacterial Community in Sequencing Batch Reactor. Chinese Journal of Chemical Engineering, 17 (3), pp. 484- 92. http://dx.doi.org/10.1016/S1004-9541(08)60235-9

Carvalho, G., Lemos, P.C., Oehmen, A., & Reis, M.A.M. (2007). Denitrifying phosphorus removal: Linking the process performance with the microbial community structure. Water Research, 41(19), pp. 4383-4396. http://dx.doi.org/10.1016/j.watres.2007.06.065

Whang, L.M., Filipe, C.D.M., & Park, J.K. (2007). Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms. Water Research, 41(6), pp. 1312-1324. http://dx.doi.org/10.1016/j.watres.2006.12.022

Oehmen, A., Saunders, A.M., Vives, M.T., Yuan, Z. & Keller, J. (2006). Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. Journal of Biotechnology, 123(1), pp. 22-32. http://dx.doi.org/10.1016/j.jbiotec.2005.10.009

Lee, D.S., Jeon, C.O. & Park, J.M. (2001). Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system. Water Research, 35(16), pp. 3968-3976. http://dx.doi.org/10.1016/S0043-1354(01)00132-4

Al-Rekabi, W.S., Qiang, H. & Qiang, W.W. (2007). Review on Sequencing Batch Reactors. Pakistan Journal of Nutrition, 6(1), pp. 11-19. http://dx.doi.org/10.3923/pjn.2007.11.19

Zeng, R.J. & Yuan, Z. (2004). Improved understanding of the interactions and complexities of biological nitrogen and phosphorus removal processes. Bioengineering, 3, pp. 265-272. http://dx.doi.org/10.1007/s11157-004-7459-8

Wang, F., Lu, S., Wei, Y. & Ji, M. (2009). Characteristics of aerobic granule and nitrogen and phosphorus removal in a SBR. Journal of Hazardous Materials, 164(2–3), pp. 1223-1227. http://dx.doi.org/10.1016/j.jhazmat.2008.09.034

Miao, L., Wang, K., Wang, s., Zhu, R., Li, B., Peng, Y. & Weng, D. (2014). Advanced nitrogen removal from landfill leachate using real-time controlled three-stage sequence batch reactor (SBR) system. Bioresource Technology, 159, pp. 258-265. http://dx.doi.org/10.1016/j.biortech.2014.02.058

Wei, Y., Ji, M., Li, R. & Qin, F. (2012). Organic and nitrogen removal from landfill leachate in aerboci granular sludge sequencing batch reactors. Waste Management, 32, pp. 448-455. http://dx.doi.org/10.1016/j.wasman.2011.10.008

Uygur, A & Kargi, F. (2004). Biological nutrient removal from pre-treated landfill leachate in a sequencing batch reactor. Journal of Environmental Management, 71, pp. 9-14. http://dx.doi.org/10.1016/j.jenvman.2004.01.002

Morling, S. (2010). Nitrogen removal and heavy metals in leachate treatment using SBR techonology. Journal of Hazardous Materials, 174, pp. 679-686. http://dx.doi.org/10.1016/j.jhazmat.2009.09.104

Neczaj, E., Kacprzak, M., Kamizela, T., Lach, J. & Okoniewska, E. (2008). Sequencing Batch reactor system for the co-treatment of landfill leachate and dairy wastewater. Desalination, 222, pp. 404-409. http://dx.doi.org/10.1016/j.desal.2007.01.133

Laitinen, N., Luonsi, A. & Vilen, J. (2006). Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination, 191, pp. 86-91. http://dx.doi.org/10.1016/j.desal.2005.08.012

Huang, X., Gao, D., Peng, S. & Tao, Y. (2014). Effects of ferrous and manganese ions on anammox process in sequencing batch biofilm reactors. Journal of Environmental Sciences, 26, pp. 1034-1039. http://dx.doi.org/10.1016/S1001-0742(13)60531-8

Pérez, M. L., Dauntan, R., Contreras, A. & González, H. P. (2002). Remoción de nitrógeno y fósforo en aguas residuales utilizando un reactor discontinuo secuencial SBR. Presentado en el XXVIII Congreso Interamericano de Ingeniería Sanitaria y Ambiental. Cancún, México.

Wang, D., Li, X., Yang, Q., Zeng, G., Liao, D. & Zhang, J. (2008). Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresource Technology, 99(13), pp. 5466-5473. http://dx.doi.org/10.1016/j.biortech.2007.11.007

Wu, Ch. & Jin, Y. (2011). Performance of nitrogen and phosphorus removal of municipal wastewater in sequencing batch biofilm reactor. Energy Procedia, 11, pp. 4453-4457.

Feng, Ch., Ding, D., Jin, Y., Hao, Ch., Zhao, Y. & Suemura, T. (2011). Domestic sewage treatment in a sequencing batch biofilm reactor (SBBR) with an intelligent controlling system. Desalination, 276, pp. 260-265. http://dx.doi.org/10.1016/j.desal.2011.03.059

Sirianuntapiboon, S., Jeeyachok, N. & Larplai, R. (2005). Sequencing batch reactor biofilm system for treatment of milk industry wastewater. Journal of Environmental Management, 76(2), pp. 177-183. http://dx.doi.org/10.1016/j.jenvman.2005.01.018

Kim, D., Jung, N. & Park, Y. (2008). Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates. Korean J. Chem. Eng., 25(4), pp. 793-800. http://dx.doi.org/10.1007/s11814-008-0130-2

Sirianuntapiboon, S. & Sansak, J. (2008). Treatability studies with granular activated carbon and sequencing batch reactor system for textile wastewater containing direct dyes. Journal of Hazardous Materials, 159, pp. 404-411. http://dx.doi.org/10.1016/j.jhazmat.2008.02.031

Malakahmad, A., Hasani, A., Eisakhani, M. & Isa, M. (2011). Sequencing batch reactor for the removal of Hg and Cd from synthetic petrochemical factory wastewater. Journal of Hazardous Materials, 191, pp. 118-125. http://dx.doi.org/10.1016/j.jhazmat.2011.04.045

Lin, S. & Jiang, Ch. (2003). Fenton oxidation and sequencing batch reactor treatments of high-strength semiconductor wastewater. Desalination, 154, pp. 107-116. http://dx.doi.org/10.1016/S0011-9164(03)80011-5

Van Den Hende, S., Carré, E., Cocaud, E., Beelen, V., Boon, N .& Vervaeren, H. (2014). Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors. Bioresource Technology, 161, pp. 245-254. http://dx.doi.org/10.1016/j.biortech.2014.03.057

Mara-ón, E., Vázquez, I., Rodríguez, J., Castrillón, L., Fernández, Y. & López, H. (2008). Treatment of coke wastewater in a sequential batch reactor at pilot plant scale. Bioresource Techonolgy, 99, pp. 4192-4198. http://dx.doi.org/10.1016/j.biortech.2007.08.081

Bural, C., Demirer, G., Kantoglu, O. & Dilek, F. (2010). Treatment of opium alkaloid containing wastewater in sequencing batch reactor-Effect of gamma irradiation. Radiation Physics and Chemistry, 79, pp. 519-526. http://dx.doi.org/10.1016/j.radphyschem.2009.09.013

Daverey, A., Su, S., Huang, Y., Chen, S., Sung, S. & Lin, J. (2013). Partial nitrification and anammox process: A method for high strength optoelectronic industrial wastewater treatment. Water Research, 47, pp. 2929-2937. http://dx.doi.org/10.1016/j.watres.2013.01.028

Lan, Ch., Kumar, M., Wang, Ch.& Lin, J. (2011). Development of simultaneous partial nitrification process in a sequential batch reactor. Bioresource Technology, 102, pp. 5514-5519. http://dx.doi.org/10.1016/j.biortech.2010.11.024

Cómo citar
Muñoz Paredes, J. F., & Ramos Ramos, M. (2014). Reactores discontinuos secuenciales: Una tecnología versátil en el tratamiento de aguas residuales. Ciencia E Ingeniería Neogranadina, 24(1), 49–66. https://doi.org/10.18359/rcin.7
Publicado
2014-06-01
Sección
Artículos

Métricas

QR Code

Algunos artículos similares: