Metasuperficies en el diseño de antenas: una introducción

Palabras clave: antena, GSTC, metafilm, metasuperficies, modelado

Resumen

En los últimos años las metasuperficies se han perfilado como nuevos materiales que pueden utilizarse de manera eficiente en diversos campos prácticos. Aplicaciones como cambio de polarización, antenas, superficies de impedancia y cámaras anecoicas han mostrado resultados esperanzadores en diferentes líneas de investigación. Sin embargo, su modelado y caracterización es complejo comparado con otros tipos de materiales, lo que dificulta la obtención de resultados relevantes de manera eficaz. En este trabajo se presentan algunos de los resultados más importantes asociados a la física de las metasuperficies junto con sus potenciales usos y aplicaciones, describiendo su caracterización en el diseño de antenas: metapantallas y metafilms. Además, se hace un paralelo entre sus ventajas y desventajas y al final se muestran resultados de simulación de diversos subtipos de antenas y el análisis de su comportamiento a distintas frecuencias de operación.

Biografía del autor/a

Gina M. Moreno, Institución Universitaria ITM

Tecnóloga en Telecomunicaciones de la Institución Universitaria ITM. Institución Universitaria ITM, Medellín, Colombia.

Santiago Perez-Walton, Institucion Universitaria ITM

Doctor en Física de la Universidad de Antioquia. Institución Universitaria ITM, Medellín, Colombia.

 

Francisco López, Institucion Universitaria ITM

Doctor en Física de la Universidad de Antioquia. Institución Universitaria ITM, Medellín, Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Agencias de apoyo:

Jóvenes Investigadores ITM 2021

Biografía del autor/a

Gina M. Moreno, Institución Universitaria ITM

Tecnóloga en Telecomunicaciones de la Institución Universitaria ITM. Institución Universitaria ITM, Medellín, Colombia.

Santiago Perez-Walton, Institucion Universitaria ITM

Doctor en Física de la Universidad de Antioquia. Institución Universitaria ITM, Medellín, Colombia.

 

Francisco López, Institucion Universitaria ITM

Doctor en Física de la Universidad de Antioquia. Institución Universitaria ITM, Medellín, Colombia.

Referencias bibliográficas

G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ", Sov. Phys. Usp, vol. 10, n.° 4, pp. 509-514, ene-feb,1968, https://doi.org/10.1070/PU1968v010n04ABEH003699

M. I. Kontorovich, "Average boundary conditions at the surface of a grating with a square mesh", Radiotekh. Elektron., vol. 8, pp. 1506-1515, 1963.

K. Achouri y C. Caloz, Electromagnetic Metasurfaces: Theory and Applications. John Wiley & Sons, 2021. https://doi.org/10.1002/9781119525219

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser y S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity", Phys. Rev. Lett., vol. 84, n.° 18, pp. 4184-4187, May. 2000, https://doi.org/10.1103/PhysRevLett.84.4184

F. Yang y Y. Rahmat-Samii, Surface Electromagnetics: With Applications in Antenna, Microwave, and Optical Engineering. Cambridge: Cambridge University Press, 2019. https://doi.org/10.1017/9781108470261

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth y D. R. Smith, "An Overview of the Theory and Applications of Metasurfaces: The two-dimensional equivalents of metamaterials", IEEE Ant. Prop. Mag., vol. 54, n.° 2, pp. 10-35, Abr. 2012, https://doi.org/10.1109/MAP.2012.6230714

F. Costa y M. Borgese, "Metamaterials, Metasurfaces and Applications", en Compendium on Electromagnetic Analysis: From Electrostatics to Photonics: Fundamentals and Applications for Physicists and Engineers, Volume 3, Antennas, Antenna Arrays and Microwave Devices, 89-169, 2020, https://doi.org/10.1142/9789813270305_0003

S. S. Bukhari, J. Vardaxoglou y W. Whittow, ''A metasurfaces review: Definitions and applications", Appl. Sci., vol. 9, n.° 13, p. 2727, Jul. 2019, https://doi.org/10.3390/app9132727

A. Monti, A. Alu, A. Toscano y F. Bilotti, "Surface impedance modeling of all-dielectric metasurfaces", IEEE Trans. Antennas Propag., vol. 68, n.° 3, pp. 1799-1811, Mar. 2020. https://doi.org/10.1109/TAP.2019.2951521

W. T. Chen, A. Y. Zhu y F. Capasso, "Flat optics with dispersion-engineered metasurfaces", Nat Rev Mater, vol. 5, n.° 8, pp. 604-620, Ago. 2020, https://doi.org/10.1038/s41578-020-0203-3

L. Holloway y E. F. Kuester, "Generalized sheet transition conditions for a metascreen, a fishnet metasurface", IEEE Transactions on Antennas and Propagation, vol. 66, n.° 5, pp. 2414-2427, May. 2018, https://doi.org/10.1109/TAP.2018.2809620

M. Faenzi, G. Minatti, D. González-Ovejero, F. Caminita, E. Martini, C. Della Giovampaola y S. Maci, "Metasurface antennas: New models, applications and realizations", Sci. Rep., vol. 9, n.° 1, pp. 1-14, Dic. 2019, https://doi.org/10.1038/s41598-019-46522-z

G. Bouchitté y B. Schweizer, "Homogenization of Maxwell's Equations in a Split Ring Geometry", Multiscale Modeling Simulation, vol. 8, pp. 717-750, Mar. 2010, https://doi.org/10.1137/09074557X

C. L. Holloway, A. Dienstfrey, E. F. Kuester, J. F. O'Hara, A. K. Azad y A. J. Taylor, "A Discussion on the Interpretation and Characterization of Meta films/Metasurfaces: The Two-Dimensional Equivalent of Metamaterials", Metamaterials, 3, 2, pp. 100-112, 2009, https://doi.org/10.1016/j.metmat.2009.08.001

D. R. Smith, S. Schultz, P. Markos y C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients", Phys. Rev. B, vol. 65, p. 195104, 2002, https://doi.org/10.1103/PhysRevB.65.195104

K. Wang, Q. Zhang y Q. Zhang, "Electromagnetic Simulation of 2.5-Dimensional Cylindrical Metasurfaces With Arbitrary Shapes Using GSTC-MFCM", IEEE Access, vol. 8, pp. 142101-142110, 2020, https://doi.org/10.1109/ACCESS.2020.3011835

N. Chamanara, Y. Vahabzadeh, K. Achouri y C. Caloz, "Spacetime processing metasurfaces: GSTC synthesis and prospective applications", 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pp. 365-366, 2016, https://doi.org/10.1109/APS.2016.7695891

E. F. Kuester, M. A. Mohamed, M. Piket-May y C. L. Holloway, "Averaged Transition Conditions for Electromagnetic Fields at a Metafilm", IEEE Transactions on Antennas and Propagation, AP-51, 10, pp. 2641-2651, 2003, https://doi.org/10.1109/TAP.2003.817560

C. L. Holloway y E. F. Kuester, "Reflection and Transmission Coefficients for a Metascreen: Retrieval Approach for Determining Effective Surface Susceptibilities and Surface Porosities", IEEE Trans. on Antennas and Propag., 2017

C. L. Holloway, E. F. Kuester y A. Dienstfrey, "Characterizing Metasurfaces/Metafilms: The Connection Between Surface Susceptibilities and Effective Material Properties", en IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1507-1511, 2011, https://doi.org/10.1109/LAWP.2011.2182591

S. Gupta, Z. Briqech, A. R. Sebak y T. Ahmed Denidni, "Mutual-Coupling Reduction Using Metasurface Corrugations for 28 GHz MIMO Applications", en IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2763-2766, 2017, https://doi.org/10.1109/LAWP.2017.2745050

K. L. Chung y S. Chaimool, "Diamagnetic metasurfaces for performance enhancement of microstrip patch antennas", Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 2011, pp. 48-52.

H. Xiong, M. Tang y Y. Peng, "Surface Impedance of Metasurfaces/Graphene Hybrid Structures", Nanoscale Res Lett, vol. 14, n.° 194, 2019, https://doi.org/10.1186/s11671-019-2995-x

F. Yang y Y. Rahmat-Samii, Surface Electromagnetics: With Applications in Antenna, Microwave, and Optical Engineering. Cambridge: Cambridge University Press, 2019. https://doi.org/10.1017/9781108470261

M. I. Khan, F. A. Tahir y R. Saleem, "An angularly stable tri-band reflective cross-polarization conversion anisotropic metasurface", 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), pp. 1735-1737, 2017, https://doi.org/10.1109/PIERS-FALL.2017.8293416

M. I. Khan y F. A. Tahir, "An angularly stable dual-broadband anisotropic cross polarization conversion metasurface", Journal of Applied Physics, vol. 122, n.° 5, p. 053103, Ago. 2017, https://doi.org/10.1063/1.4997456

M. I. Khan, Q. Fraz y F. A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle", Journal of Applied Physics, vol. 121, n.° 4, p. 045103, Ene. 2017, https://doi.org/10.1063/1.4974849

"PCB board manufacturers explain what is fr4 dielectric constant." [Internet]. https://www.ipcb.com/technical/762.html

M. Kim, I. Kim, J. Jang, D. Lee, K. T. Nam y J. Rho, "Active Color Control in a Metasurface by Polarization Rotation", Applied Sciences, vol. 8, n.° 6, p. 982, Jun. 2018, https://doi.org/10.3390/app8060982

G. Yoon, D. Lee, K. T. Nam y J. Rho, "Geometric metasurface enabling polarization independent beam splitting", Sci Rep, vol. 8, n.° 1, p. 9468, Jun. 2018, https://doi.org/10.1038/s41598-018-27876-2

G. Liu, H. Liu, J. Han, Y. Mu y L. Li, "Reconfigurable metasurface with polarization-independent manipulation for reflection and transmission wavefronts", Journal of Physics D Applied Physics, vol. 53, p. 045107, Ene. 2020, https://doi.org/10.1088/1361-6463/ab5253

P.-S. Kildal, "Fundamental properties of canonical soft and hard surfaces, perfect magnetic conductors and the newly introduced DB surface and their relation to different practical applications including cloaking", en 2009 International Conference on Electromagnetics in Advanced Applications, pp. 607-610, Sep. 2009, https://doi.org/10.1109/ICEAA.2009.5297262

A. U. Zaman y P.-S. Kildal, "GAP Waveguides", en Handbook of Antenna Technologies, Z. N. Chen, D. Liu, H. Nakano, X. Qing, and T. Zwick, Eds. Singapore: Springer, pp. 3273-3347, 2016, https://doi.org/10.1007/978-981-4560-44-3_130

P.-S. Kildal, E. Alfonso, A. Valero-Nogueira y E. Rajo-Iglesias, "Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates", IEEE Antennas Wirel. Propag. Lett., vol. 8, pp. 84-87, 2009, https://doi.org/10.1109/LAWP.2008.2011147

E. Pucci, E. Rajo-Iglesias y P.-S. Kildal, "New Microstrip Gap Waveguide on Mushroom-Type EBG for Packaging of Microwave Components", IEEE Microw. Wirel. Compon. Lett., vol. 22, n.° 3, pp. 129-131, Mar. 2012, https://doi.org/10.1109/LMWC.2011.2182638

E. Pucci, E. Rajo-Iglesias, J.-L. Vázquez-Roy y P.-S. Kildal, "Planar Dual-Mode Horn Array With Corporate-Feed Network in Inverted Microstrip Gap Waveguide", IEEE Trans. Antennas Propag., vol. 62, n.° 7, pp. 3534-3542, Jul. 2014, https://doi.org/10.1109/TAP.2014.2317496

B. Lian, C. Vafa, F. Vafa y S.-C. Zhang, "Chern-Simons theory and Wilson loops in the Brillouin zone", Phys. Rev. B, vol. 95, n.° 9, pp. 094512, Mar. 2017, https://doi.org/10.1103/PhysRevB.95.094512

R. V. Craster, T. Antonakakis, M. Makwana y S. Guenneau, "Dangers of using the edges of the Brillouin zone", Phys. Rev. B, vol. 86, n.° 11, pp. 115130, Sep. 2012, https://doi.org/10.1103/PhysRevB.86.115130

O. Zetterstrom, R. Hamarneh y O. Quevedo-Teruel, "Experimental Validation of a Metasurface Luneburg Lens Antenna Implemented With Glide-Symmetric Substrate-Integrated Holes", IEEE Antennas Wirel. Propag. Lett., vol. 20, n.° 5, pp. 698-702, May. 2021, https://doi.org/10.1109/LAWP.2021.3060283

O. Quevedo-Teruel, J. Miao, M. Mattsson, A. Algaba-Brazalez, M. Johansson y L. Manholm, "Glide-Symmetric Fully Metallic Luneburg Lens for 5G Communications at Ka-Band", IEEE Antennas Wirel. Propag. Lett., vol. 17, n.° 9, pp. 1588-1592, Sep. 2018, https://doi.org/10.1109/LAWP.2018.2856371

Dassault Systems, "Electromagnetic field Simulation Software | CST Studio Suite". https://www.3ds.com/products-services/simulia/products/cst-studio-suite/

Cómo citar
Moreno, G. M., Perez-Walton, S., & López, F. (2022). Metasuperficies en el diseño de antenas: una introducción. Ciencia E Ingeniería Neogranadina, 32(2), 145–170. https://doi.org/10.18359/rcin.6071
Publicado
2022-12-30
Sección
Artículos

Métricas

Crossref Cited-by logo
QR Code