Un esquema de optimización estocástica multiobjetivo para el problema de la producción química para empresas de caña de azúcar

Palabras clave: optimización multiobjetivo, modelado estocástico, bioetanol, bioplástico, bioenergía, biomasa, impactos ambientales

Resumen

Este artículo presenta un esquema de optimización estocástica multiobjetivo para la planificación de la producción de empresas cañeras bajo incertidumbre. El enfoque propuesto considera tres etapas. La primera etapa comprende los balances de masa y energía para determinar los flujos del proceso. La segunda etapa considera la formulación de un Modelo Determinístico Multiobjetivo (MODM, por sus siglas en inglés) considerando dos funciones objetivo: maximizar el margen bruto y minimizar el impacto ambiental. El MODM está dado por diferentes planes de producción que responden de manera diferente a la variabilidad de los parámetros bajo incertidumbre. Finalmente, la última etapa considera elementos estocásticos (es decir, precios de productos, demandas y costos) dentro del esquema determinista para obtener un Modelo Estocástico Multiobjetivo (MOSM, por sus siglas en inglés). Los resultados computacionales de un estudio de caso con base en la industria de la caña de azúcar colombiana muestran la efectividad del esquema propuesto. Los resultados incluyen la estrategia de inversión para la planificación óptima de la producción con un análisis de la incertidumbre de los parámetros en el rendimiento económico de las configuraciones de producción planificadas.

Biografía del autor/a

Heiver Perea Valencia, Pontificia Universidad Javeriana - Cali

Department of Civil and Industrial Engineering, Pontificia Universidad Javeriana Cali.

John Wilmer Escobar, Universidad del Valle

Department of Accounting and Finance Faculty of Business Management.

William Ocampo Duque, Pontificia Universidad Javeriana - Cali

Department of Civil and Industrial Engineering, Pontificia Universidad Javeriana Cali.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Heiver Perea Valencia, Pontificia Universidad Javeriana - Cali

Department of Civil and Industrial Engineering, Pontificia Universidad Javeriana Cali.

John Wilmer Escobar, Universidad del Valle

Department of Accounting and Finance Faculty of Business Management.

William Ocampo Duque, Pontificia Universidad Javeriana - Cali

Department of Civil and Industrial Engineering, Pontificia Universidad Javeriana Cali.

Referencias Bibliográficas

V. H. Mistry and R. M. Makwana, "Computationally efficient vanishing point detection algorithm based road segmentation in road images," in 2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT), 2016, pp. 103-110. DOI: https://doi.org/10.1109/ICAECCT.2016.7942564

J. Caicedo Martínez and B. Bacca-Cortes, "AutoNavi3AT, Seguimiento de una Vía Urbana usando Visión Omnidireccional para la Navegación en Vehículos Autónomos." Dirección Nacional de Derechos de Autor, Ministerio del Interior, Bogotá, Colombia, p. 1, 2019.

P. Moghadam and J. F. Dong, "Road direction detection based on vanishing-point tracking," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 1553-1560. DOI: https://doi.org/10.1109/IROS.2012.6386089

K. Sabu and M. H. Nerkar, "Vanishing Point Estimation for On-Road Navigation," Int. J. Emerg. Technol. Adv. Eng., vol. 5, no. 4, pp. 73-77, 2015.

J. Wang, S. Sun, and X. Zhao, "Unstructured road detection and path tracking for tracked mobile robot," in 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2015, pp. 535-539. DOI: https://doi.org/10.1109/CYBER.2015.7287996

K. Lu, J. Li, X. An, and H. He, "Vision Sensor-Based Road Detection for Field Robot Navigation," Sensors, vol. 15, no. 11, pp. 29594-29617, Nov. 2015. DOI: https://doi.org/10.3390/s151129594

X. Guo, Q. Li, and C. Sun, "A new road tracking method based on heading direction detection," Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 233, no. 2, pp. 232-248, Feb. 2019. DOI: https://doi.org/10.1177/0954407017740791

S. Kumaar, S. Mannar, N. B, P. R. S, and O. S. N, "High Speed Autonomous Navigation of Unmanned Aerial Vehicles using novel Road Identification, Following & Tracking (RIFT) Algorithm*," in 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 2019, pp. 1-6. DOI: https://doi.org/10.1109/DISCOVER47552.2019.9007990

R. Miyamoto et al., "Vision-Based Road-Following Using Results of Semantic Segmentation for Autonomous Navigation," in 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin), 2019, pp. 174-179. DOI: https://doi.org/10.1109/ICCE-Berlin47944.2019.8966198

J.-C. Bazin and M. Pollefeys, "3-line RANSAC for orthogonal vanishing point detection," in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 4282-4287. DOI: https://doi.org/10.1109/IROS.2012.6385802

R. Munguía, C. López-Franco, E. Nuño, and A. López-Franco, "Method for SLAM Based on Omnidirectional Vision: A Delayed-EKF Approach," J. Sensors, vol. 2017, pp. 1-14, 2017. DOI: https://doi.org/10.1155/2017/7342931

D. C. Hernandez, Van-Dung Hoang, A. Filonenko, and Kang-Hyun Jo, "Vision-based heading angle estimation for an autonomous mobile robots navigation," in 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 1967-1972. DOI: https://doi.org/10.1109/ISIE.2014.6864917

Z. Shang and Z. Shen, "Vision-model-based Real-time Localization of Unmanned Aerial Vehicle for Autonomous Structure Inspection under GPS-denied Environment," Apr. 2019. DOI: https://doi.org/10.1061/9780784482445.037

K.-W. Kim, J.-H. Im, M.-B. Heo, and G.-I. Jee, "Precise Vehicle Position and Heading Estimation Using a Binary Road Marking Map," J. Sensors, vol. 2019, pp. 1-18, Jan. 2019. DOI: https://doi.org/10.1155/2019/1296175

Wenhao Xu, Yan Zhuang, Huosheng Hu, and Yiwen Zhao, "Real-time road detection and description for robot navigation in an unstructured campus environment," in Proceeding of the 11th World Congress on Intelligent Control and Automation, 2014, pp. 928-933. DOI: https://doi.org/10.1109/WCICA.2014.7052840

V. Grassi Junior and J. Okamoto Junior, "Development of an omnidirectional vision system," J. Brazilian Soc. Mech. Sci. Eng., vol. 28, no. 1, pp. 58-68, Mar. 2006. DOI: https://doi.org/10.1590/S1678-58782006000100007

F. Deng, X. Zhu, and C. He, "Vision-Based Real-Time Traversable Region Detection for Mobile Robot in the Outdoors," Sensors, vol. 17, no. 9, p. 2101, Sep. 2017. DOI: https://doi.org/10.3390/s17092101

M. Montemerlo, S. Thrun, and W. Whittaker, "Conditional particle filters for simultaneous mobile robot localization and people-tracking," Proc. 2002 IEEE Int. Conf. Robot. Autom. (Cat. No.02CH37292), vol. 1, pp. 695-701.

O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots," Int. J. Rob. Res., vol. 5, no. 1, pp. 90-98, 1986. DOI: https://doi.org/10.1177/027836498600500106

C. Mei and P. Rives, "Single View Point Omnidirectional Camera Calibration from Planar Grids," 2004.

Cómo citar
Perea Valencia, H., Escobar, J. W., & Ocampo Duque, W. (2022). Un esquema de optimización estocástica multiobjetivo para el problema de la producción química para empresas de caña de azúcar. Ciencia E Ingeniería Neogranadina, 32(1), 115-136. https://doi.org/10.18359/rcin.5811
Publicado
2022-06-03
Sección
Artículos
Crossref Cited-by logo

Más sobre este tema