Cuantificación del efecto de la densidad de datos de LiDAR en la calidad del DEM

Palabras clave: reducción de datos, tamaño de la cuadrícula, precisión de interpolación, complejidad de las formas topográficas

Resumen

El presente trabajo tiene como objetivo equilibrar la densidad de muestreo y el volumen de datos al preservar la sensibilidad de representación de formas topográficas complejas en función de tres descriptores de superficie: pendiente, curvatura y rugosidad. Se explora el efecto de la densidad de los datos de LiDAR sobre la precisión del Modelo Digital de Elevación (DEM) mediante una nube de puntos terrestres de 32 millones de mediciones obtenidas de un vuelo LiDAR sobre un área topográfica compleja de 156 ha. Se produjeron modelos digitales de elevación con diferentes densidades relativas al conjunto de datos de puntos totales (100%, 75%, 50%, 25%, 10% y 1% y en diferentes tamaños de cuadrícula de 23cm, 27cm, 33cm, 46cm, 73cm y 230cm). La precisión se evaluó mediante los algoritmos de interpolación de distancia inversa ponderada y de Kriging, con lo que se obtuvo 72 superficies a partir de las cuales se calcularon las estadísticas de error: error cuadrático medio, error medio absoluto, error cuadrático medio e índice de efectividad de predicción. Estos se utilizaron para evaluar la calidad de los resultados en contraste con los datos de validación correspondientes al 10% de la muestra original. Los resultados indicaron que Kriging fue el algoritmo más eficiente al reducir los datos al 1% sin diferencias estadísticamente significativas con el conjunto de datos original, y la curvatura fue el parámetro morfométrico con el impacto negativo más significativo en la precisión de la interpolación.

Biografía del autor/a

Julián Garzón Barrero, Universidad del Quindío

Lecturer, Universidad del Quindío, Topographic and Geomatics Engineering Program, Armenia, Colombia.

Carlos Eduardo Cubides Burbano, Universidad del Quindío

Ingeniero Físico, Universidad del Cauca

Magister en Ingeniería: énfasis Geomática, Universidad del Quindío

Gonzalo Jiménez-Cleves, Universidad del Quindío

MS in Systems Engineering. Lecturer, Universidad del Quindío, Topographic and Geomatics Engineering Program, Armenia, Colombia.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Julián Garzón Barrero, Universidad del Quindío

Lecturer, Universidad del Quindío, Topographic and Geomatics Engineering Program, Armenia, Colombia.

Carlos Eduardo Cubides Burbano, Universidad del Quindío

Ingeniero Físico, Universidad del Cauca

Magister en Ingeniería: énfasis Geomática, Universidad del Quindío

Gonzalo Jiménez-Cleves, Universidad del Quindío

MS in Systems Engineering. Lecturer, Universidad del Quindío, Topographic and Geomatics Engineering Program, Armenia, Colombia.

Referencias Bibliográficas

A. N. V. Graham et al., "Effect of ground surface interpolation methods on the accuracy of forest attribute modelling using unmanned aerial systems-based digital aerial photogrammetry systems-based digital aerial photogrammetry," Int. J. Remote Sens., vol. 41, no. 9, pp. 1-20, 2019, doi: https://doi.org/10.1080/01431161.2019.1694722

L. R. Jarron, N. C. Coops, W. H. MacKenzie, P. Tompalski, and P. Dykstra, "Detection of sub-canopy forest structure using airborne LiDAR," Remote Sens. Environ., vol. 244, no. 111770, 2020, doi: https://doi.org/10.1016/j.rse.2020.111770

Y. Megahed, A. Shaker, and W. Y. Yan, "Fusion of airborne lidar point clouds and aerial images for heterogeneous land-use urban mapping," Remote Sens., vol. 13, no. 4, pp. 1-36, 2021, doi: https://doi.org/10.3390/rs13040814

S. Veeck, F. F. da Costa, D. L. Correia Lima, A. R. da Paz, and D. G. Allasia Piccilli, "Scale dynamics of the HIDROPIXEL high-resolution dem-based distributed hydrologic modeling approach," Environ. Model. Softw., vol. 127, p. 104695, 2020, doi: https://doi.org/10.1016/j.envsoft.2020.104695

E. Hutanu, A. Mihu-Pintilie, A. Urzica, L. E. Paveluc, C. C. Stoleriu, and A. Grozavu, "Using 1D HEC-RAS modeling and LiDAR data to improve flood hazard maps accuracy: A case study from Jijia Floodplain (NE Romania)," Water (Switzerland), vol. 12, no. 6, pp. 1-21, 2020, doi: https://doi.org/10.3390/w12061624

J. Fan et al., "Monitoring and Analyzing Mountain Glacier Surface Movement Using SAR Data and a Terrestrial Laser Scanner: A Case Study of the Himalayas North Slope Glacier Area," Remote Sens., vol. 11, no. 6, p. 625, 2019, doi: https://doi.org/10.3390/rs11060625

M. Avian et al., "The status of earth observation techniques in monitoring high mountain environments at the example of pasterze glacier, Austria: Data, methods, accuracies, processes, and scales," Remote Sens., vol. 12, no. 8, 2020, doi: https://doi.org/10.3390/rs12081251

D. Xu, H. Wang, W. Xu, Z. Luan, and X. Xu, "LiDAR applications to estimate forest biomass at individual tree scale: Opportunities, challenges and future perspectives," Forests, vol. 12, no. 5, pp. 1-19, 2021, doi: https://doi.org/10.3390/f12050550

P. Tabrizian, P. K. Baran, D. Van Berkel, H. Mitasova, and R. Meentemeyer, "Modeling restorative potential of urban environments by coupling viewscape analysis of lidar data with experiments in immersive virtual environments," Landsc. Urban Plan., vol. 195, p. 103704, 2020, doi: https://doi.org/10.1016/j.landurbplan.2019.103704

E. K. Dey, F. Tarsha Kurdi, M. Awrangjeb, and B. Stantic, "Effective selection of variable point neighbourhood for feature point extraction from aerial building point cloud data," Remote Sens., vol. 13, no. 8, 2021, doi: https://doi.org/10.3390/rs13081520

W. Cao, G. Sofia, and P. Tarolli, "Geomorphometric characterisation of natural and anthropogenic land covers," Prog. Earth Planet. Sci., vol. 7, no. 2, 2020, doi: https://doi.org/10.1186/s40645-019-0314-x

X. Liu, Z. Zhang, J. Peterson, and S. Chandra, "The effect of LiDAR data density on dem accuracy," MODSIM 2007 - Int. Congr. Model. Simul. - Land, Water Environ. Manag. Integr. Syst. Sustain. Proc., pp. 1363-1369, 2007.

Y. Duan, C. Yang, H. Chen, W. Yan, and H. Li, "Low-complexity point cloud denoising for LiDAR by PCA-based dimension reduction," Opt. Commun., vol. 482, no. September 2020, p. 126567, 2021, doi: https://doi.org/10.1016/j.optcom.2020.126567

M. E. Hodgson and P. Bresnahan, "Accuracy of airborne lidar-derived elevation: Empirical assessment and error budget," Photogramm. Eng. Remote Sensing, vol. 70, no. 3, pp. 331-339, 2004, doi: https://doi.org/10.14358/PERS.70.3.331

E. S. Anderson, J. A. Thompson, D. A. Crouse, and R. E. Austin, "Horizontal resolution and data density effects on remotely sensed LIDAR-based dem," Geoderma, vol. 132, no. 3-4, pp. 406-415, 2006, doi: https://doi.org/10.1016/j.geoderma.2005.06.004

M. E. Hodgson et al., "An Evaluation of Lidar-derived Elevation and Terrain Slope in Leaf-off Conditions," Photogramm. Eng. Remote Sens., vol. 71, no. 7, pp. 817-823, 2005, doi: https://doi.org/10.14358/PERS.71.7.817

P. F. Fisher and N. J. Tate, "Causes and consequences of error in digital elevation models," Prog. Phys. Geogr., vol. 30, no. 4, pp. 467-489, 2006, doi: https://doi.org/10.1191/0309133306pp492ra

T. Hengl, "Finding the right pixel size," Comput. Geosci., vol. 32, no. 9, pp. 1283-1298, 2006, doi: https://doi.org/10.1016/j.cageo.2005.11.008

Y. Hu, "Automated Extraction of Digital Terrain Models, Roads and Buildings Using Airborne Lidar DataAutomated Extraction of Digital Terrain Models, Roads and Buildings Using Airborne Lidar Data," University of Calgary, 2003.

W. R. Tobler, "Lattice Tuning," Geogr. Anal., vol. 11, no. 1, pp. 36-44, 1979, doi: https://doi.org/10.1111/j.1538-4632.1979.tb00671.x

W. R. Tobler, "A Computer Movie Simulating Urban Growth in the Detroit Region," Econ. Geogr., vol. 46, p. 234, 1970, doi: https://doi.org/10.2307/143141

R. Giraldo, Introducción a la Geoestadística. Teoría y Aplicación. Santa Fe de Bogotá: Universidad Nacional de Colombia, 2011.

A. J. A. M. Temme, G. B. M. Heuvelink, J. M. Schoorl, and L. Claessens, "Geostatistical simulation and error propagation in geomorphometry," in Developments in Soil Science, vol. 33, Elsevier, 2009, pp. 121-140. doi: https://doi.org/10.1016/S0166-2481(08)00005-6

P. K. Srivastava, P. C. Pandey, G. P. Petropoulos, N. N. Kourgialas, V. Pandey, and U. Singh, "GIS and remote sensing aided information for soil moisture estimation: A comparative study of interpolation techniques," Resources, vol. 8, no. 2, p. 70, 2019, doi: https://doi.org/10.3390/resources8020070

M. Voltz and R. Webster, "A comparison of kriging, cubic splines and classification for predicting soil properties from sample information," J. Soil Sci., vol. 41, pp. 473-490, 1990, doi: https://doi.org/10.1111/j.1365-2389.1990.tb00080.x

C. A. Gotway, R. B. Ferguson, G. W. Hergert, and T. A. Peterson, "Comparison of Kriging and Inverse-Distance Methods for Mapping Soil Parameters," Soil Sci. Soc. Am., vol. 60, no. 4, pp. 1237-1247, 1996, doi: https://doi.org/10.2136/sssaj1996.03615995006000040040x

P. W. Bogaart and P. A. Troch, "Curvature distribution within hillslopes and catchments and its effect on the hydrological response," Hydrol. Earth Syst. Sci., vol. 10, no. 6, pp. 925-936, 2006, doi: https://doi.org/10.5194/hess-10-925-2006

H. Taud and J.-F. Parrot, "Measurement of dem roughness using the local fractal dimension," Géomorphologie Reli. Process. Environ., vol. 11, no. 4, pp. 327-338, 2005, doi: https://doi.org/10.4000/geomorphologie.622

igac. Instituto Geográfico Agustín Codazzi, Estudio general de suelos y zonificación de tierras de los departamentos de Caqueta y Guaviare. Bogotá, D.C., Colombia, 2009.

R. Dikau, "The application of a digital relief model to landform analysis in geomorphology," in Three dimensional applications in geographical information systems, J. Raper, Ed. London; New York; Philadelphia: Taylor & Francis, 1989, p. 189.

S. J. Riley, S. D. DeGloria, and R. Elliot, "A Terrain Ruggedness Index that Qauntifies Topographic Heterogeneity," Intermt. J. Sci., vol. 5, no. 1-4, pp. 23-27, 1999.

G. Babish, "Environment Canada Geostatistics Without Tears," pp. 1-56, 2000.

X. Liu, H. Hu, P. Hu, S. Francisco, E. Science, and P. S. Thenkabail, "remote sensing," Remote Sens., vol. 7, no. 6, pp. 7062-7079, 2015, doi: https://doi.org/10.3390/rs70607062

J. L. Mesa-Mingorance and F. J. Ariza-López, "Accuracy assessment of digital elevation models (dems): A critical review of practices of the past three decades," Remote Sens., vol. 12, no. 16, p. 2630, 2020, doi: https://doi.org/10.3390/rs12162630

A. Zhou, Y. Chen, J. P. Wilson, H. Su, Z. Xiong, and Q. Cheng, "An Enhanced Double-Filter Deep Residual Neural Network for Generating Super Resolution dems," Remote Sens., vol. 13, no. 16, p. 3089, 2021, doi: https://doi.org/10.3390/rs13163089

D. Godone and G. Garnero, "The role of morphometric parameters in Digital Terrain Models interpolation accuracy : a case study," Eur. J. Remote Sens., vol. 46, no. 1, pp. 198-214, 2013, doi: https://doi.org/10.5721/EuJRS20134611

F. J. Aguilar, F. Agüera, M. A. Aguilar, and F. Carvajal, "Effects of terrain morphology, sampling density, and interpolation methods on grid dem accuracy," Photogramm. Eng. Remote Sensing, vol. 71, no. 7, pp. 805-816, 2005, doi: https://doi.org/10.14358/PERS.71.7.805

Cómo citar
Garzón Barrero, J., Cubides Burbano, C. E., & Jiménez-Cleves, G. (2021). Cuantificación del efecto de la densidad de datos de LiDAR en la calidad del DEM. Ciencia E Ingeniería Neogranadina, 31(2), 149-169. https://doi.org/10.18359/rcin.5776
Publicado
2021-12-31
Sección
Artículos
Crossref Cited-by logo