Impact of InterChannel Interference in gridless nyquist-wdm systems with and without nonlinear impairments compensation

  • Jhon James Granada Torres Universidad de Antioquia
  • Juan Pablo López Martínez Bancolombia
  • Eduardo Avendaño Fernandez Universidad de Antioquia. Universidad Pedagógica y Tecnológica de Colombia
  • Ana María Cárdenas Soto Universidad de Antioquia
  • Neil Guerrero González Universidad Nacional de Colombia
Palabras clave: Coherent Communication, Fiber Communication, Digital Equalization, Interchannel Interference

Resumen

In this paper, we expose a characterization of interchannel interference (ICI) effects in gridless Nyquist-WDM systems affected by both contributions: i) due to overlapping among optical carriers and ii) due to stimulation of nonlinear impairments of the optical fiber. The ICI is assessed regarding bit error rate (BER) at 16-Gbaud and 32-Gbaud, as a function of several system parameters. Compensation of nonlinear impairments based on digital backpropagation algorithm is implemented in the DSP-based coherent receiver. The results demonstrated that ICI due to channels overlapped has a higher impact concerning BER than the optical fiber’s nonlinear impairments. Besides, the use of the backpropagation algorithm improves the system performance, reducing up to 3 and 0.7 orders of magnitude of BER in QPSK and 16QAM cases, respectively. It means that this algorithm can minimize the nonlinear effects under variation of system parameters, but its performance is limited in sub-Nyquist cases.

Descargas

La descarga de datos todavía no está disponible.

Referencias

T. T. Nguyen, S. T. Le, Q. He, L. V. Compernolle, M. Wuilpart and P. Mégret, "Multicarrier Approaches for High-Baudrate Optical-Fiber Transmission Systems With a Single Coherent Receiver," in IEEE Photonics Journal, vol. 9, no. 2, pp. 1-10, April 2017.

M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo and L. Potí, "A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks," in IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 211-263, Firstquarter 2018.

O. Gerstel, M. Jinno, A. Lord and S. J. B. Yoo, "Elastic optical networking: a new dawn for the optical layer?," in IEEE Communications Magazine, vol. 50, no. 2, pp. s12-s20, February 2012.

G. Bosco, V. Curri, A. Carena, P. Poggiolini and F. Forghieri, "On the Performance of Nyquist-WDM Terabit Superchannels Based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers," in Journal of Lightwave Technology, vol. 29, no. 1, pp. 53-61, Jan.1, 2011.

X. Liu and S. Chandrasekhar, "Superchannel for next-generation optical networks," OFC 2014, San Francisco, CA, 2014, pp. 1-33.

J.J. Granada Torres, A. M. Cárdenas Soto, N. Guerrero González, "Enhanced intercarrier interference mitigation based on encoded bit-sequence distribution inside optical superchannels", Optical Engineering, vol. 55, no. 10, 106124, Oct. 27, 2016.

J. J. G. Torres, A. M. C. Soto and N. G. González, "Mitigation of linear inter-channel interference for sub-Nyquist spacing in optical multicarrier systems," 2015 7th IEEE Latin-American Conference on Communications (LATINCOM), Arequipa, 2015, pp. 1-5.

G. P. Agrawal, “Fiber-Optic Communication System”, John Wiley & Sons Inc., 2002

Mingchia Wu and W. I. Way, "Fiber nonlinearity limitations in ultra-dense WDM systems," in Journal of Lightwave Technology, vol. 22, no. 6, pp. 1483-1498, June 2004.

Junkye Bae, Yunho Nam, Kyuhyeon Jeong, Hee Yeal Rhy and Gwangyoung Yi, "A new laser control algorithm for inter-channel crosstalk reduction in injection seeded WDM-PON," 2012 Fourth International Conference on Communications and Electronics (ICCE), Hue, 2012, pp. 59-62.

M. Xiang, S. Fu, M. Tang, et al., “Nyquist WDM superchannel using offset-16QAM and receiver-side digital spectral shaping,” in Opt. Express vol.22, no.14, pp. 17448–17457, 2014.

M. Xiang, S. Fu, H. Tang, M. Tang, P. Shum and D. Liu, "Linewidth-Tolerant Joint Digital Signal Processing for 16QAM Nyquist WDM Superchannel," in IEEE Photonics Technology Letters, vol. 27, no. 2, pp. 129-132, Jan.15, 15 2015.

L. B. Du and A. J. Lowery, "Channelized chromatic dispersion compensation for XPM suppression and simplified digital SPM compensation," OFC 2014, San Francisco, CA, 2014, pp. 1-3.

O. Golani, M. Feder and M. Shtaif, "Kalman-MLSE Equalization for NLIN Mitigation," in Journal of Lightwave Technology, vol. 36, no. 12, pp. 2541-2550, June15, 15 2018.

M. Sato, R. Maher, D. Lavery, K. Shi, B. C. Thomsen and P. Bayvel, "Frequency Diversity MIMO Detection for DP- QAM Transmission," in Journal of Lightwave Technology, vol. 33, no. 7, pp. 1388-1394, April1, 1 2015.

J. Pan, C. Liu, T. Detwiler, A. J. Stark, Y. T. Hsueh and S. E. Ralph, "Inter-Channel Crosstalk Cancellation for Nyquist-WDM Superchannel Applications," in Journal of Lightwave Technology, vol. 30, no. 24, pp. 3993-3999, Dec.15, 2012.

T. Koike-Akino et al., "Han–Kobayashi and Dirty-Paper Coding for Superchannel Optical Communications," in Journal of Lightwave Technology, vol. 33, no. 7, pp. 1292-1299, April1, 1 2015.

J. J. Granada Torres, S. Varughese, V. A. Thomas, A. Chiuchiarelli, S. E. Ralph, A. M. Cárdenas Soto, N. Guerrero González, “Mitigation of time-varying distortions in Nyquist-WDM systems using machine learning,” in Optical Fiber Technology, vol. 38, pp. 130-135, 2017.

A. Mohajerin-Ariaei et al., "Demonstration of tunable mitigation of interchannel interference of spectrally overlapped 16-QAM/QPSK data channels using wave mixing of delayed copies," 2017 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, 2017, pp. 1-3.

J. P. Lopez, J. J. Granada Torres, A. M. Cárdenas, and N. Guerrero Gonzalez, "Inter-Channel Interference Characterization in a Nyquist-WDM gridless scenario with Nonlinear Impairments Compensation by using Digital Backpropagation," in Latin America Optics and Photonics Conference, Medellin, 2016, p. LTu2C.4.

F. Yaman and G. Li, "Nonlinear Impairment Compensation for Polarization-Division Multiplexed WDM Transmission Using Digital Backward Propagation," in IEEE Photonics Journal, vol. 2, no. 5, pp. 816-832, Oct. 2010.

E. Ip and J. M. Kahn, "Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation," in Journal of Lightwave Technology, vol. 26, no. 20, pp. 3416-3425, Oct.15, 2008.

G. Gao, J. Zhang and W. Gu, "Analytical Evaluation of Practical DBP-Based Intra-Channel Nonlinearity Compensators," in IEEE Photonics Technology Letters, vol. 25, no. 8, pp. 717-720, April15, 2013.

E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission”, in Opt. Express, vol. 18, no. 14, pp. 15144, July, 2010.

R. Deiterding, R. Glowinski, H. Oliver and S. Poole, "A Reliable Split-Step Fourier Method for the Propagation Equation of Ultra-Fast Pulses in Single-Mode Optical Fibers," in Journal of Lightwave Technology, vol. 31, no. 12, pp. 2008-2017, June15, 2013.

E. Ip and J. M. Kahn, "Compensation of Dispersion and Nonlinear Impairments Using Digital Backpropagation," in Journal of Lightwave Technology, vol. 26, no. 20, pp. 3416-3425, Oct.15, 2008.

Cómo citar
Granada Torres, J. J., López Martínez, J. P., Avendaño Fernandez, E., Cárdenas Soto, A. M., & Guerrero González, N. (2019). Impact of InterChannel Interference in gridless nyquist-wdm systems with and without nonlinear impairments compensation. Ciencia E Ingeniería Neogranadina, 29(2). https://doi.org/10.18359/rcin.3830
Publicado
2019-06-20
Sección
Artículos