Descriptores espacio-frecuencia para identificación automática de patrones de textura en productos textiles utilizando aprendizaje supervisado

  • Arley Bejarano Martínez, Andres Felipe Calvo Salcedo, Carlos Alberto Henao Universidad Tecnológica de Pereira
Palabras clave: Textiles, tiempo frecuencia, transformada de Fourier

Resumen

En este documento se presenta un caso de estudio para evaluar la eficiencia que presentan los descriptores espacio frecuencia en la clasificación de patrones textiles. La metodología de trabajo consta de tres etapas fundamentales, la caracterización, la clasificación y la validación. En la etapa de caracterización se utilizan descriptores como la transformada Wavelet, la transformada de Fourier y la adaptación de la Transformada corta de Fourier en espacio para la generación de un vector de características, a este vector se le computa los momentos estadísticos como Kurtosis, sesgo, media y desviación estándar. Para la etapa de clasificación se analiza el uso de tres métodos del estado del arte como lo son las Máquinas de Soporte Vectorial (SVM), las Redes Neuronales Artificiales (RNA) y el Proceso Gaussiano (GP). Para validar el método se construye una base de datos anotada con diez tipos de telas con un total de 1000 fotos, a las cuales se le aplica el proceso caracterización y clasificación por medio de un experimento Montecarlo. En esta etapa se generan configuraciones aleatorias de entrenamiento (70%) y prueba (30%) obteniendo el desempeño de cada modelo de clasificación. Por último se obtiene la matriz de confusión y se determinan los porcentajes de acierto de cada experimento.

Descargas

La descarga de datos todavía no está disponible.

Citas

Control de calidad textil. [En línea]. Disponible en: http://www.detextiles.com/files/CONTROL%20DE%20CALIDAD%20TEXTIL.pdf

C. Spinola et al., "Image processing for surface quality control in stainless steel production lines," 2010 IEEE International Conference on Imaging Systems and Techniques, Thessaloniki, 2010, pp. 192-197.

M. Sharifzadeh, S. Alirezaee, R. Amirfattahi and S. Sadri, "Detection of steel defect using the image processing algorithms," 2008 IEEE International Multitopic Conference, Karachi, 2008, pp. 125-127.

P. L. Mazzeo, L. Giove, G. M. Moramarco, P. Spagnolo and M. Leo, "HSV and RGB color histograms comparing for objects tracking among non overlapping FOVs, using CBTF," 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Klagenfurt, 2011, pp. 498-503.

Arias, N., & Ortiz, A. (2016). ANÁLISIS COMPARATIVO DE DESCRIPTORES PARA LA CLASIFICACIÓN DE TELAS UTILIZANDO IMÁGENES. Universidad Tecnológica de Pereira, Pereira, Colombia.

A. Luna, M. Angel, “Análisis del Clúster Textil en el Perú”. [En línea]. Disponible en: http://sisbib.unmsm.edu.pe/bibvirtualdata/Tesis/Ingenie/angulo_lm/cap2.PDF

COATS, “Todo Sobre Fibras Textiles”. [En línea]. Disponible en: http://www.coatsindustrial.com/es/images/Know_About_Textile_Fibres_tcm62-9073.pdf

ZHANG, Dengsheng; LU, Guojun. Shape-based image retrieval using generic Fourier descriptor. Signal Processing: Image Communication, 2002, vol. 17, no 10, p. 825-848.

DENG, Yining, et al. An efficient color representation for image retrieval. IEEE Transactions on image processing, 2001, vol. 10, no 1, p. 140-147.

VEERARAGHAVAN, Ashok, et al. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph., 2007, vol. 26, no 3, p. 69.

PERNER-NOCHTA, Iris; POSTEN, Clemens. Simulations of light intensity variation in photobioreactors. Journal of Biotechnology, 2007, vol. 131, no 3, p. 276-285.

Obagi, Elementos de teoría de probabilidad para ingenieros. Bogotá (Colombia): Pontificia Universidad Javeriana, 2003.

Mallat, S. "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp. 674–693.

Meyer, Y. Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

J. Núnez, J.C. Carvajal, L.A. Bautista, “El TLC con estados unidos y su impacto en el sector agropecuario colombiano: Entre esperanzas e incertidumbres”, Revista Electrónica de la facultad de Derecho, 1 (1), 118-133, 2004.

V.A. Contreras, C. Gutiérrez, M.E. León, Y. Cadena, F.E. León, “Iso 9001-2: un compromiso posible en la era del TLC,” Revista Teoría Y Praxis Investigativa, 3 (2), 52-60, 2008.

A. Bejarano & A. F. Calvo, (2012) Escáner 3d para control de calidad de piezas metalúrgicas. Tesis de pre-grado, Universidad Tecnológica de Pereira.

N. Florez, L.P. Sánchez, F.G. Ramírez, (2011) Visión Artificial Para Detección Automática de Fallas Estructurales en Botellas de Vidrio. Tesis de Maestría, Instituto politécnico nacional.

J.M. Prats, (2005) Control Estadístico de Procesos Mediante Análisis Multivariante de Imágenes. Tesis de Doctorado, Universidad Politécnica de Valencia.

C.G. Spinola, J.M. Cañero-Nieto, M.J. Martin, J.M. Bonelo, F. Garcia, G. Moreno, S. Espejo, G. Hylander, & J. Vizoso. (2010, Julio). Image Processing for Surface Quality Control in Stainless Steel Production Lines. Presentado en Imaging Systems and Techniques (IST), 2010 IEEE International Conference on. [En línea] Disponible: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5548466.

C.G. Spinola, J. Canero, G. Moreno, J.M. Bonelo, & M. Martin. (2011, Mayo). Real-time Image Processing for Edge Inspection and Defect Detection in Stainless Steel Production Lines. Presentado en Imaging Systems and Techniques (IST), 2011 IEEE International Conference on. [En línea] Disponible: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5962196.

A. Bejarano Martínez, A. F. Calvo and C. A. Henao, "Supervised learning models for control quality by using color descriptors: A study case," 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, 2016, pp. 1-7. doi: 10.1109/STSIVA.2016.7743368 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7743368&isnumber=7743290

B. Shabari Shedthi, Surendra Shetty y M. Siddappa. Implementation and comparison of K-means and fuzzy C-means algorithms for agricultural data. Inventive Communication and Computational Technologies (ICICCT), 2017 International Conference on. Disponible en: http://ieeexplore.ieee.org/document/7975168/

Duber Martínez Torres y Sergio Orjuela. Máquina de Vectores de soporte para la detección de defectos textiles empleando características espaciales de textura. Revista Colombiana de Tecnologías de Avanzada. ISSN: 1692-7257, Vol 2, No 14, 2009

Chi-Ho Chan and G. K. H. Pang, "Fabric defect detection by Fourier analysis," in IEEE Transactions on Industry Applications, vol. 36, no. 5, pp. 1267-1276, Sep/Oct 2000. doi: 10.1109/28.871274.

Sungshin Kim, Man Hung Lee and Kwang-Bang Woo, "Wavelet analysis to fabric defects detection in weaving processes," Industrial Electronics, 1999. ISIE '99. Proceedings of the IEEE International Symposium on, Bled, 1999, pp. 1406-1409 vol.3. doi: 10.1109/ISIE.1999.796918.

A. F. Costa, G. Humpire-Mamani and A. J. M. Traina, "An Efficient Algorithm for Fractal Analysis of Textures," 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, 2012, pp. 39-46. doi: 10.1109/SIBGRAPI.2012.15 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6382737&isnumber=6382731

A. Bejarano Martínez, A. F. Calvo and C. A. Henao “Identificación automática de productos textiles utilizando caracterización espacio frecuencia y aprendizaje supervisado". Congreso Internacional de Multimedia 2017.

Cómo citar
Bejarano Martínez, Andres Felipe Calvo Salcedo, Carlos Alberto Henao, A. (2018). Descriptores espacio-frecuencia para identificación automática de patrones de textura en productos textiles utilizando aprendizaje supervisado. Ciencia E Ingeniería Neogranadina, 28(2), 63-82. https://doi.org/10.18359/rcin.3212
Publicado
2018-05-17
Sección
Artículos