Simulation of physical habitat in Ayuquila-Armeria river in the west of Mexico

  • Demetrio Meza Rodríguez Universidad de Guadalajara, Centro Universitario de la Costa Sur, Departamento de Ecología y Recursos Naturales, Instituto Manantlán de Ecología y Conservación de la Biodiversidad (IMECBIO). http://orcid.org/0000-0002-5855-6939
  • Luis Manuel Martinez Rivera Universidad de Guadalajara, Centro Universitario de la Costa Sur, Departamento de Ecología y Recursos Naturales, Instituto Manantlán de Ecología y Conservación de la Biodiversidad (IMECBIO).
  • José Luis Olguin López Universidad de Guadalajara, Centro Universitario de la Costa Sur, Departamento de Ecología y Recursos Naturales, Instituto Manantlán de Ecología y Conservación de la Biodiversidad (IMECBIO).
  • Ángel Aguirre García Universidad de Guadalajara, Centro Universitario de la Costa Sur, Departamento de Ecología y Recursos Naturales, Instituto Manantlán de Ecología y Conservación de la Biodiversidad (IMECBIO).
Palabras clave: two-dimensional model, hydrodynamic model, indicator species, hydrological regime

Resumen

En la última década las simulaciones ecohidráulicas han expuesto la capacidad de generar los campos de las variables hidráulicas y los biológicos que establecen el hábitat físico en los ríos. El desarrollo de modelos bidimensionales empleados en la Metodología Incremental de Caudal en la Corriente (IFIM), ha permitido representar el hábitat utilizable para las especies de interés. En México en el año 2012 se publicó la norma mexicana, que establece el procedimiento para la determinación del caudal ecológico, en su apéndice normativo E considera la simulación ecohidráulica. El objetivo de este estudio es generar las simulaciones hidráulicas combinadas con las curvas de idoneidad de hábitat de peces en el Río Ayuquila-Armería, para determinar el Hábitat Potencial Útil, y considerar las series en el tiempo del régimen hidrológico actual. Para generar las simulaciones ecohidráulicas, se selección un tramo de río aguas abajo de la confluencia del río Ayuquila y Tuxcacuesco, se realizaron tres campañas de campo para medir los parámetros de profundidad, velocidad y sustrato dentro del río. Para simular el hábitat ecohidráulico se usó la plataforma FaSTMECH dentro del software iRIC 1.5, se calibraron y validaron las simulaciones. Como resultado, se obtuvieron simulaciones a diferente caudal y su variabilidad de hábitat potencial útil para cada una de las especies seleccionadas, además, se definió el Hábitat Potencial Útil para las series en el tipo del régimen hidrológico actual. El modelo iRIC 1.5 en su plataforma FaSTMECH fue adecuado para simular las características ecohidráulica en dos dimensiones del tramo seleccionado.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Diplas, P., Lynn, D y Neary, V. (2000). Environmental hydraulics technical committee within EWRI. Journal of Hydraulic Engineering, 126(5): 320–321. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2000)126:5(320)

Janauer, G.A. (2000). Ecohydrology: Fusing concepts and scales. Ecological Engineering, 16: 9–16. DOI: https://doi.org/10.1016/S0925-8574(00)00072-0

Bovee, K.D. (1982). A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Information Paper No. 12. Washington, DC: U.S. Fish and Wildlife Service (FWS/ OBS-82 /26). 273 pp.

Bovee, K.D. (1986). Development and evaluation of habitat suitability criteria for use in the in-stream flow incremental methodology. Instream Flow Information Paper No. 21. Washington, DC: U.S. Fish and Wildlife Service, Biological Report 86(7). 263 pp.

Pasternack, G.B. (2011). 2D Modeling and ecohydraulic analysis. Land, Air, and Water Resources. University of California at Davis. CreateSpace Independent Publishing Platform. 158 pp.

Newson, M. D y Newson, C.L. (2000). Geomorphology, ecology and river channel habitat: Mesoscale approaches to basin-scale challenges. Progress in Physical Geography 24(2): 195–217. DOI: https://doi.org/10.1177/030913330002400203

Sandoval-Solis, S., Mckinney, D.C. y Loucks, D.P. (2010). Sustability index for wáter resource planning and managament. Journal of Water Resource Planning. 137(5): 381-390. DOI: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000134

Nestler, J. M., Goodwin, R. A., Smith, D. L. and Anderson, J. J. (2008) A Mathematical and Conceptual Framework for Ecohydraulics, 205–224. In Hydroecology and Ecohydrology: Past, Present and Future (eds P. J. Wood, D. M. Hannah and J. P. Sadler), John Wiley & Sons, Ltd, Chichester, UK. DOI: https://doi.org/10.1002/9780470010198.ch12

Diez, H.J.M y Burbano, B.L. (2007). Revisión de los modelos eco-hidráulicos uni-dimensionales (1D) y bidimensionales (2d) en corrientes fluviales. Avances en Recursos Hidráulicos, (15): 75-88.

Rice, S., Little, S. Wood, P. Moir, H. y Vericat, D. (2010). The relative contributions of ecology and hydraulics to ecohydraulics. River Research and Applications, 26: 363–366. DOI:10.1002/rra.1369

Nestler, J.M, Stewardson, M.J. Gilvear, D.J. Webb, A.J. y Smith, D.L. (2016). Ecohydraulics exemplifies the emerging “paradigm of the interdisciplines”, Journal of Ecohydraulics, 1:1-2, 5-15, DOI: 10.1080/24705357.2016.1229142

Tharme, R. E. (2003). A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19: 397–441. DOI:10.1002/rra.736

Maddock, I., Harby, A. Kemp, P. y Wood, P. (2013b). Ecohydraulics: an introduction. 1-6. In: Maddock, I., Harby, A. Kemp, P. y Wood, P. (ed.). Ecohydraulics: An integrated approach. John Wiley & Sons, Ltd, Chichester, UK. DOI: 10.1002/9781118526576.ch1

Milhous, R.T., Wegner, D.L. y Waddle, T. (1981). User's guide to the physical habitat simulation system. Washington, DC: U.S. Fish and Wildlife Service (FWS /OBS-81 /43), 319 pp.

Gard, M. (2009). Comparison of spawning habitat predictions of PHABSIM and River2D models. International Journal of River Basin Management, 7:1, 55-71, DOI: 10.1080/15715124.2009.9635370

Lee, J.H., Kil, J.T. y Jeong, S. (2010). Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model. Ecological Engineering, 36(10): 1251–1259. DOI: https://doi.org/10.1016/j.ecoleng.2010.05.004

Ayllón, D., Almodóvar, A., Nicola, G.G., Parra, I. y Elvira, B. (2012). A new biological indicator to assess the ecological status of Mediterranean trout type streams. Ecological Indicators, 20: 295-303. DOI: https://doi.org/10.1016/j.ecolind.2012.02.028

Steffler, P. y Blackburn, J. (2002). Two-dimensional depth averaged model of river hydrodynamics and fish habitat. Introduction to Depth Averaged Modeling and User's Manual. University of Alberta, 197 pp.

Dongkyun, I., Hyeongsik, K., Kyu-Ho, K y Sung-Uk, C. (2011). Changes of river morphology and physical fish habitat following weir removal. Ecological Engineering, 37(6): 883-892. DOI: https://doi.org/10.1016/j.ecoleng.2011.01.005

Boavida, I., Santos, J.M. Katopodis, C. Ferreira, M.T. y Pinheiro, A. (2013). Uncertainty in predicting the fish-response to two-dimensional habitat modeling using field-data. River Research and Applications, 29: 1164-1174. DOI:10.1002/rra.2603

Parasiewicz, P., Rogers, J.N. Vezza, P. Gortázar, J. Seager, T. Pegg, M. Wiśniewolski, W. y Comoglio, C. (2013). Applications of the MesoHABSIM Simulation Model. 109-124. In: Maddock, I., Harby, A. Kemp, P. y Wood, P. (ed.). Ecohydraulics An Integrated Approach. DOI: https://doi.org/10.1002/9781118526576.ch6

Holmquist, J.G y Waddle, T.J. (2013). Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation. Ecological Indicators, London, 28: 115-124. DOI: https://doi.org/10.1016/j.ecolind.2012.03.005

Bovee, K.D., Lamb, B.L. Bartholow, J.M. Stalnaker, C.B. Taylor, J. y Enriksen, J. (1998). Stream habitat analysis using the instream flow incremental methodology. Fort Collins CO, U.S. Geological Survey. Biological Resources Division Information and Technology Report USGS/BRD, VIII, 131 pp.

Chang-Lae, J y Shimizu, Y. (2005). Numerical simulation of relatively wide, shallow channels with erodible banks, Journal of Hydraulic Engineering, 131(7): 565-575. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(565)

Oliveira, I.E., Da Silva, D.D. Guedes, H.A.S. Dergam, J.A. y Ribeiro, C.B.D. (2016). One- and two-dimensional ecohydraulic modeling of formoso river (MG). Engenharia Agrícola, 36(6), 1050-1062. DOI: https://dx.doi.org/10.1590/1809-4430-eng.agric.v36n6p1050-1062/2016

DOF. (2012). Diario Oficial de la Federación. Norma Mexicana NMX-AA-159-SCFI. Que establece el procedimiento para la determinación del caudal ecológico en cuencas hidrológicas. Diario Oficial de la Federación. México, D.F, 123 pp.

Meza-Rodríguez, D., Martínez-Rivera, L.M., Mercado-Silva, N., García de Jalón-Lastra, D., González del Tánago-Del Rio, M., Marchamalo-Sacristán, M y De la Mora-Orozco, C. (2017). Propuesta de caudal ecológico en la cuenca del Río Ayuquila-Armería en el Occidente de México. Latin american journal of aquatic research, 45(5), 1017-1030. DOI: https://dx.doi.org/10.3856/vol45-issue5-fulltext-17

Martínez, R.L.M., Carranza, A. y Micaela, G. (2000a). Aquatic ecosystem pollution of the Ayuquila River, Sierra de Manantlán Biosphere Reserve, Mexico. 165–181. In: Munawar, M., Lawrence, S.G. Munawar, I.F. y Malley, D.F. (ed.). Aquatic Ecosystems of Mexico: Status and Scope, Ecovision World Monograph Series, Backhuys, Leiden, The Netherlands.

Lyons, J y Navarro-Pérez, S. (1990). Fishes of the Sierra de Manantlán, West-Central Mexico. The Southwestern Naturalist, 35: pp. 32-46.

Santana, E., Navarro, S. Martínez, L.M. Aguirre, A. Figueroa, P. y Aguilar, C. (1993). Contaminación, aprovechamiento y conservación de los recursos acuáticos del Río Ayuquila, Reserva de la Biosfera Sierra de Manantlán, Jalisco-Colima. Tiempos de Ciencia. 30: pp. 29-38.

Meza-Rodríguez, D., Martínez-Rivera, L.M., Mercado-Silva, N., García de Jalón-Lastra, D., González del Tánago-Del Rio, M., Marchamalo-Sacristán, M y De la Mora-Orozco, C. (2017). Régimen natural de caudales del río Ayuquila-Armería en el occidente de México. Terra Latinoamericana, 35(3), 203-217. DOI: https://dx.doi.org/10.28940/terra.v35i3.224

Wolman, M.G. (1954). A method of sampling coarse river-bed material. Transactions American Geophysical Union. 35(6): 951-956. DOI: https://doi.org/10.1029/TR035i006p00951

Chow, V.T. 1959. Open-Channel Hydraulics. MacGrawHill Book Co. New York. 697 pp.

Nelson, J.M., Shimizu, Abe, T. Asahi, K. Gamou, M. Inoue, T. Iwasaki, Kakinuma, T. Kawumura, S. Kimura, I. Kyura, T. McDonald, R.R. Nabi, M. Nakatsugawa, M. Simões, F.R. Takebayashi, H. y Watanabe. Y. (2016). The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Advances in Water Resources, 93(a): 62-74. DOI: https://doi.org/10.1016/j.advwatres.2015.09.017

McDonald, R.R., Nelson, J.M y Bennett, J.P. (2005), Multi-dimensional surface‐water modeling system user’s guide, U.S. Geological Survey Techniques and Methods, 6‐B2, 136 pp.

Stillwater Sciences. (2012). Lower Tuolumne River Instream Flow Studies: Pulse Flow Study Report. Final. Prepared by Stillwater Sciences, Berkeley, California for Turlock Irrigation District and Modesto Irrigation District, California. 207 pp.

Kenney, T.A y Freeman, M.L. (2011). Two-dimensional streamflow simulations of the Jordan River, Midvale and West Jordan, Utah. Prepared in cooperation with the U.S. Environmental Protection Agency. Scientific Investigations Report 2011–5043, 50 pp.

Hilldale, R.C., Mooney, D.M. y Collins, K.L. (2007). Identifying Stream Habitat Features With a Two-Dimensional Hydraulic Model. Yakima River Basin Water Storage Feasibility Study, Washington. U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado Technical Series No. TS-YSS-12. Reclamation Managing Water in West. 39 pp.

Patankar, S.V. (1980). Numerical heat transfer and fluid flow. (Hemisphere Series on Computational Methods in Mechanics and Thermal science). CRC Press. 106 pp.

Nelson, J.M y McDonald, R.R. (1997). Mechanics and Modeling of Flow and Bed Evolution in Lateral Separation Eddies, Glen Canyon Environmental Studies Report, 69 pp.

Jaw, S.Y y Chen, C.J. (1998). Present status of second-order closure turbulence models. I: overview. Journal of Engineering Mechanics, 124(5): 485–501. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1998)124:5(485)

Kimura, I. y Hosoda, T. (2003). A non-linear k-

Shahjahan, M.S., Hosoda, T. y Kimura, I. (2015). Development of a nonlinear

Shahjahan, A., Milon, H. y Masuma, H. (2017). Two-Dimensional Simulation of Flows in an Open Channel with Groin-Like Structures by iRIC Nays2DH, Mathematical Problems in Engineering, vol. 2017, Article ID 1275498, 10 pp. DOI:10.1155/2017/1275498.

Pastemack, G.B y Senter, A.E. (2011). 21st Century instream flow assessment framework for mountain streams. California Energy Commission, PIER. CEC-500-2013-059. 495 pp.

Martínez-Capel, C.F. y García de Jalón, D.L. (1999). Desarrollo de curvas de preferencia de microhábitat para Leuciscus pyrenaicus y Barbus bocagei por buceo en el río Jarama (Cuenca del Tajo). Limnetica, 17(1): 71-83.

Benjankar, R., Tonina, D. y McKean, J. (2015). One-dimensional and two-dimensional hydrodynamic modeling derived flow properties: impacts on aquatic habitat quality predictions. Earth Surface Processes and Landforms, 40(3): 340-356. DOI: 10.1002/esp.3637

Bovee, K.D. (1978). The Incremental Method of Assessing Habitat Potential for Cool Water Species, with Management Implications. American Fisheries Society Special Publication 11: 340–346.

Moir, H.J., Gibbins, C.N. Soulsby, C. y Youngson, A.F. (2005). PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: testing the influence of habitat suitability indices on model output. River Research and Applications 21: 1021–1034. DOI:10.1002/rra.869

Tonina, D., McKean, J.A., Tang, C y Goodwin, P. (2011). New tools for aquatic habitat modeling. In: Valentine, Eric M., ed. Balance and uncertainty - Water in a changing world: Proceedings of the 34th IAHR World Congress, 33rd Hydrology and Water Resources Symposium, and 10th Conference on Hydraulics in Water Engineering; 26 June-1 July 2011, Brisbane, Australia. Engineers Australia. 3137-3144.

CONAGUA–SEMARNAT–IMTA (Comisión Nacional de Agua-Secretaría de Medio Ambiente y Recursos Naturales-Instituto Mexicano de Tecnología del Agua). (2008). Banco Nacional de Datos de Aguas Superficiales (BANDAS), 8 CD’s. Jiutepec, Morelos. México.

Armas-Vargas, F., Escolero, O. Garcia de Jalon, D. Zambrano, L. Gonzalez del Tánago, M. y Kralisch, S. (2017). Proposing environmental flow based on physical habitat simulation for river fish species in the Lower Duero River Basin, Mexico, Hidrobiológica, 27(2): 185-200.

Rush, M.R. (2009). Peces dulceacuícolas de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, 545 pp.

Ruiz-Campos, G. (2012). Catálogo de peces dulceacuícolas de Baja California Sur. Secretaria de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología. Universidad Autónoma de Baja California, 169 pp.

Lyons, J. y Mercado-Silva, N. (1999). Patrones taxonómicos y ecológicos entre comunidades de peces en ríos y arroyos en el Oeste de Jalisco, México. Anales del instituto de biología Universidad Nacional Autónoma de México. Serie Zoología, 70(2): 169-190.

Mercado-Silva, N., Lyons, J.D. Salgado, G.M. y Medina, M.N. (2002). Validation of a fish-based index of biotic integrity for streams and rivers of central Mexico. Reviews in Fish Biology and Fisheries, 12: 179–191. DOI: https://doi.org/10.1023/A:1025099711746

Luna-Figueroa, J., Díaz, F. y Espina, S. (2003). Preferred temperature of the mexican native cichlid Cichlasoma istlanum (Jordan y Snyder, 1899). Hidrobiológica, 14 (4): 271-275.

Milhous, R.T., Bartholow, J.M. Updike, M.A. y Moos, A.R. (1990). Reference Manual for Generation and Analysis of Habitat Time Series-Version II. Washington, D. C., U. S. Fish and Wildlife Service, U. S. Department of the Interior, 249 pp. (Instream Flow Information Paper, no. 27. U. S. Fish and Wildlife Service, Biological Report 90 (16).

Gard, M. (2010). Comparison of spawning habitat predictions of PHABSIM and River2D models. International Journal of River Basin Management, Madrid, 7(1): 55-71. DOI: 10.1080/15715124.2009.9635370

Jowett, I.G. y Duncan, M.J. (2012). Effectiveness of 1D and 2D hydraulic models for instream habitat analysis in a braided river. Ecological Engineering, 48: 92-100. DOI: https://doi.org/10.1016/j.ecoleng.2011.06.036

Tonina, D. y Jorde, K. (2013). Chapter 3. Hydraulic Modelling Approaches for Ecohydraulic Studies: 3D, 2D, 1D and Non‐Numerical Models. 31-74. In: Ecohydraulics. Maddock, I., A. Harby., P. Kemp y P. Wood (Eds), John Wiley & Sons, Ltd, Chichester, Reino Unido. DOI: 10.1002 / 9781118526576.ch3

Payne, T.R. (2004). A roadmap for PIER research on instream flow determinations for hydropower applications in California. PIER final project report. Prepared for: California Energy Commission, USA. 36 pp.

Cómo citar
Meza Rodríguez, D., Martinez Rivera, L. M., Olguin López, J. L., & Aguirre García, Ángel. (2019). Simulation of physical habitat in Ayuquila-Armeria river in the west of Mexico . Ciencia E Ingeniería Neogranadina, 29(2). https://doi.org/10.18359/rcin.3128
Publicado
2019-06-20
Sección
Artículos