Planificación de trayectorias para un robot tipo con restricciones dinámicas

  • Leonardo Solaque Guzmán Universidad Militar Nueva Granada
  • Nelson Muñoz Ceballos Politécnico Jaime Isaza Cadavid
  • Paola Niño Suárez Universidad Militar Nueva Granada
Palabras clave: modelo, trayectoria, configuración, control óptimo, restricción, dirigible, planificación, robot móvil, espacio de configuración, simulación

Resumen

Este documento presenta una aproximación a la planificación de caminos óptimos para un sistema con restricciones dinámicas y desplazándose dentro de un espacio libre de obstáculos. Se considera el modelo dinámico del dirigible y un análisis para el planteamiento de modelos simplificados o comúnmente conocidos como modelos de control. Se propone una planificación de la trayectoria desde el punto de vista de la teoría óptima utilizando un modelo de la dinámica de un robot móvil (que se desplaza a velocidad constante y en avance, es decir con restricciones dinámicas) como punto de partida para la primera aproximación a los caminos óptimos. Para el suavizado de las trayectorias del dirigible se proponen dos modelos con relajación en la dinámica de la variable de control y finalmente se presenta una simulación de la comparación de los diferentes resultados.

Biografía del autor/a

Leonardo Solaque Guzmán, Universidad Militar Nueva Granada

Ing. Electrónico, PhD., Profesor asistente, Facultad de Ingeniería, Investigador grupo GAV. Universidad Militar Nueva Granada, Bogotá, Colombia.

Nelson Muñoz Ceballos, Politécnico Jaime Isaza Cadavid

Ing. Electrónico, MSc., Profesor asistente, Facultad de Ingeniería, Investigador grupo ICARO. Politécnico Jaime Isaza Cadavid, Medellín, Colombia.

Paola Niño Suárez, Universidad Militar Nueva Granada

Ing. Electrónico, PhD., Profesor asociado, Facultad de Ingeniería, Investigador grupo DAVINCI. Universidad Militar Nueva Granada, Bogotá, Colombia.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Leonardo Solaque Guzmán, Universidad Militar Nueva Granada

Ing. Electrónico, PhD., Profesor asistente, Facultad de Ingeniería, Investigador grupo GAV. Universidad Militar Nueva Granada, Bogotá, Colombia.

Nelson Muñoz Ceballos, Politécnico Jaime Isaza Cadavid

Ing. Electrónico, MSc., Profesor asistente, Facultad de Ingeniería, Investigador grupo ICARO. Politécnico Jaime Isaza Cadavid, Medellín, Colombia.

Paola Niño Suárez, Universidad Militar Nueva Granada

Ing. Electrónico, PhD., Profesor asociado, Facultad de Ingeniería, Investigador grupo DAVINCI. Universidad Militar Nueva Granada, Bogotá, Colombia.

Referencias Bibliográficas

AZINHEIRA, J.R.; CARNEIRO DE PAIVA, E.; RAMOS, J.Jr.G.; BUENO, S.S.; Mission path following for an autonomous unmanned airship, IEEE International Conference on Robotics and Automation, San Francisco, April, 2000.

BARRAQUAND and LATOMBE, J.; Robot motion planning: a distributed representation approach, IEEE International Journal of Robotics Research, vol. 10, no. 6, 1991.

BARRAQUAND; KAVRAKI, L.; LATOMBE, J.; LI, T.Y.; MOTWANI, R. and RAGHAVAN, P.; A random sampling scheme for path planning, International symposium on Robotics Research, G. Giralt and G. Hirzinger Eds. Springer-Verlag, 1996.

BUI, X.N.; SOUERES, P.; BOISSONNAT, J.D. and LAUMOND, J.P.; The shortest path synthesis for non-holonomic robots moving forwards, INRIA, Rapport de Recherche No. 2153, 1994.

DUBINS, L.E.; On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal position and tangents, American Jurnal of Mathematics, vol. 79, Pag. 497-516.

ELFES, A.; MONTGOMERY, J.F.; HALL, J.L.; JOSHI, S.; PAYNE, J. and BERGH, C.F.; Autonomous flight control for a TITAN exploration AEROBOT, http://www.robotics.jpl.nasa.gov/publications/James_Montgomery/2005_ISAIRAS_AutonomousFlightControlAerobot.pdf.

FERNÁNDES, C.; GURVITS, L. and LI, Z.; Near-optimal nonholonomic motion planning for a system of coupled rigid bodies, IEEE Trans. on Automatic Control, vol. 39, no. 6, Pag. 450-463, Mar 1994.

FLIESS, M.; LEVINE, J.; MARTIN, P. and ROUCHON, P.; Flatness and defect of nonlinear systems: introductory theory and examples, International Jurnal of Control, vol. 61, no. 6, Pag. 1327-1361, 1995.

FOSSARD, A.J. and NORMAND-CYROT, D.; Systemes non linèaries, Copyright Instrument society of America,North Carolina,v. 3, 1993.

HIMA, S. and BESTAOUI, Y.; Time-optimal path for lateral navigation of an autonomous underactuated airship, American Institute of Aeronautics and Astronomics, August, 2003.

HYGOUNENC, E. and SUERES, P.; Lateral path following GPS-based control of a small-size unmanned blimp, IEEE International Conference on Robotics and Automation, Taipei (Taiwan), September 2003.

JACOBS, P.; REGE, A. and LAUMOND, J.P.; Planning Smooth paths for mobile robots, International conference on robotics and automation, 1989.

KAVRAKI, L. and LATOMBE, J.; Ramdomized preprocessing of configuration space for fast path planing, IEEE International Conference on Robotics and Automation, San Diego, C.A. Pag. 2138-2145, 1994.

KIM, J. and OSTROWSKI, J.; Motion planning of aerial robot using rapidly-exploration random trees with dynamic constraints, IEEE International Conference on Robotics and Automation, Taipei (Taiwan), September, 2003.

LAMIRAUX, F. and LAUMOND, J.P.; Smooth motion planning for car-like vehicles, IEEE Transaction ion Robotics and Automation, vol. 17, no. 4, pag. 498-502, Augost, 2001.

LATOMBE, J.C.; Robot motion planning, Kluwer Academic, 1991.

LI, Z. and CANNY, J.F.; Nonholonomic motion planning, Kluwer, Internacional series in engineering and computers.

LOZANO-PEREZ, T.; Spatial planning: a configuration space approach, IEEE Transaction Computer, vol. 32, no. 2, 1983.

OVERMARS M. and SVESTKA, P.; A probabilistic learning approach to motion planing, Workshop in Algoritmic Foundations of Robotics, San Francisco C.A., vol. 32, no. 2, 1994.

RAO, J.; LUO, J.; GONG, Z.; JIANG, Z. and XIE, S.; Design of flight control system for a robotic blimp, SPIE the International, 2005.

RIVES, P. and AZHINEIRA, J.; Linear structures following by an airship using vanishing point and horizon line in visual servoing scheme, IEEE International Conference on Robotics and Automation, New Orlans (LA), April, 2005.

WALSH, G.; MONTGOMERY, R. and SASTRY, S.; Optimal path planing on matrix Lie groups, Proceeding of the 33rd Conference on Decision and Control, Lake Buena Vista, FL- December, 1994.

YANG, G. and KAPILA, V.; Optimal path planing for unmanned air vehicles with kinematic and tractical constraints, Proceeding of the 41st IEEE Conference on Decision and Control, Pag. 1301-1306, 2002.

ZHANG, H. and OSTROWSKI, J.; Visual servoing with dynamics: Control of an unmanned blimp, IEEE International Conference on Robotics and Automation, Detroit (Michigan), May, 1999.

Cómo citar
Solaque Guzmán, L., Muñoz Ceballos, N., & Niño Suárez, P. (2008). Planificación de trayectorias para un robot tipo con restricciones dinámicas. Ciencia E Ingeniería Neogranadina, 18(1), 75-94. https://doi.org/10.18359/rcin.1069
Publicado
2008-06-01
Sección
Artículos
Crossref Cited-by logo

Más sobre este tema