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Abstract: This paper presents the first paleoenvironmental reconstruction of the last 1,130 a of the
Marriaga Swamp in the Atrato River delta in northwestern Colombia. The geochemical analyses of a
220 cm sediment core retrieved from the swamp reveal interesting climatic episodes and sedimen-
tary changes in the last millennium. We split the core into three segments, according to sediment
features, organic carbon content (OC), and geological ages. Records show different alternations of
humid and dry periods, biological productivity, carbonate precipitation, weathering grade, and high
heavy metal concentrations. The segments also concur with the geochemical differences determined
by (Zr+Rb)/Sr, Ca/Ti Mn/Fe, OC/Ti, Mg/Ca Ba/Al, Sr/Al, and Ca/Al ratios. The older sequence (between
1,130+ 90 a and 870 + 70 a) shows a dry period with intermittent flooding events and high OC pro-
duction in subareal conditions, followed by a more humid environment between 870 + 70 a and 530
+40 a, with depletion of trace element ratios and OC. The more recent period (530 + 40 a to present)
evinces an environment dominated by the fluvial regime, based on a lower Ca/Al ratio and a rise of
OC. The statistical correlations display three main clusters that distinguish among organic-biological
productivity, bedrock source components, and heavy metal inputs.
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Interpretacion paleoambiental de los sedimentos del dltimo milenio en la
Ciénaga de Marriaga, Delta de Atrato, Colombia

Resumen: en este estudio se presenta la primera reconstruccion paleoambiental de los Ultimos 1130
afos de la Ciénaga de Marriaga en el delta del rio Atrato, en el noroeste de Colombia. Los analisis
geoquimicos de un nucleo de sedimento de 220 cm recuperado en la ciénaga revelan episodios
climaticos interesantes y cambios sedimentarios en el dltimo milenio. Se dividio el nucleo en tres
segmentos, segln las caracteristicas de los sedimentos, el contenido de carbono organico (CO)y las
edades geoldgicas. Los registros muestran diferentes alternancias de periodos himedos y secos, la
productividad bioldgica, precipitacion de carbonato, grado de meteorizacion y altas concentraciones
de metales pesados. Los segmentos también coinciden con las diferencias geoquimicas determina-
das por las relaciones (ZR+RB)/Sr, Ca/Ti Mn/Fe, CO/Ti, Mg/Ca Ba/Al, Sr/Al Ca/Al. La secuencia inferior
(entre 1130 + 90 a y 870 + 70 a) muestra un periodo seco con inundaciones intermitentes y una alta
produccion de CO en condiciones subaéreas, sequida de un entorno mas himedo entre 870 + 70
aflosy 530 + 40 afios, con agotamiento de las proporciones de oligoelementos y CO. El periodo mas
reciente (530 £ 40 a al presente) evidencia un ambiente dominado por el régimen fluvial, basado en
una relacion Ca/Al mas baja y un aumento de CO. Las correlaciones estadisticas muestran tres gru-
pos principales que distinguen entre la productividad bioldgica organica, los componentes de la roca
madre y los aportes de metales pesados.

Palabras clave: sedimentos de ciénagas, reconstruccion ambiental, oligoelementos, paleoclima,
meteorizacion.



Introduction

Lacustrine sediments are formed by accumulated
organic and inorganic particles derived from dif-
ferent bedrock sources usually transported by riv-
ers under continuous and episodic sediment loads
[1]-[2]. Each lacustrine setting provides a unique
record of the geographic, climatic, and geological
variations occurring over time in a basin [3]-[7].
Proxies such as grain size, mineralogy, isotopes,
organic matter, dating, and geochemistry provide
valuable information to reconstruct the environ-
mental record of such lacustrine environments
[8]-[9]. This environmental record includes the
analysis of sediment bedrock sources, mineral
phases, sediment accumulation rates, weathering
intensity, heavy metal thresholds, and chemical
processes to identify past environmental distur-
bances [10]-[12].

The climate of the last millennium has been
widely investigated worldwide. However, some
tropical lacustrine settings remain unexplored.
That is the case of swamps in the Atrato River delta
in Colombia, in which paleoenvironmental recon-
structions are limited to characterizations based
on water, surface sediments, or shallow cores (<
80 cm) [13]-[15]. This study focuses on the flood
plain area of the Atrato River, considered one of
the most important rivers of western Colombia,
with more than 20 lacustrine systems spread along
its vast flood plain [13]. The Marriaga Swamp is the
northernmost lacustrine landform of the Atrato
River delta (8° 06’ 70” N; 76° 58’ 28” W; 15 m.a.s.l.)
with a surface area of 12.47 km? and a maximum
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water depth (measured during this research) of 4
m (Fig. 1). The swamp is connected to two main
streamflows: the Atrato River to the west and the
Cafio Tarena to the north. The area has a tropical
climate corresponding to the Intertropical Con-
vergence Zone (11cz) with average annual rainfall
from 2,500 to 3,000 mm [16]-[17]. The average tem-
perature is estimated at 33.8 °C. Humidity ranges
from 80 to 86 % throughout the year [18].

The principal human activity in the area is fish-
ing by the citizens of a small village named Mar-
riaga. This village is located on the east side of the
swamp, along the inlet feeds from Atrato River,
just in the main entrance towards the swamp.

Bedrock in the area consists of Cretaceous
rocks of igneous origin (basalts, andesites, and
granitoids) cropping to the west and south of the
Marriaga Swamp in the Baudd-Darien mountain
ridge [19]-[20]. A broad group of Eocene sedi-
mentary rocks outcrop towards the west of the
Marriaga Swamp and comprise cherts, detrital
limestones, mudstones, carbonaceous sandstones,
and marls [21]. The Quaternary deposits of the vast
alluvial plain are composed of clay and silt sedi-
ments [22] surrounding the Marriaga Swamp.

This research aims to determine the depo-
sitional processes and climatic impacts of the
Marriaga Swamp, northern Colombia, in the last
millennium, using quantitative data obtained
from xRF geochemical analyses. It is the first ap-
proach to understanding the Marriaga Swamp’s
paleoenvironmental features with major and trace
elements interpretations within the framework of
the Atrato delta.

Paleoenvironmental Interpretation of Last Millennium Sediments in the Marriaga Swamp, Atrato Delta, Colombia
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Fig. 1. Location of the Marriaga Swamp. (a) Regional location and (b) detailed location.
Source: Modified from 1GAC Topographic Base (2015) and Landsat image Eos (2020).

Materials and Methods

We drilled a sediment core at the center of the Mar-
riaga Swamp with a Livingstone Bolivia corer. The
core consists of two overlapping sections with a to-
tal length of 220 cm, retrieved at the central area of
the swamp where the depth of water to surface sed-
iments was 4 m. We sliced the core into 16 sections,
between 5 and 10 cm long each, according to visu-
ally identified stratigraphic changes. We chose eight
samples distributed on top, middle, and bottom sec-
tions of the sequence for detailed characterizations.

The physical properties of the sediment layers
were initially determined with visual and tactile
inspections of color, texture, and organic matter
content. The geochemical analyses followed the
patterns related to the three segments previously
defined by their sediment characteristics, age, and
organic carbon (OC) content. We measured varia-
tions of major and trace elements and determined
correlations from which we analyze dry and hu-
mid periods, biological productivity, carbonate
precipitation, fluvial-marine sediment input fluc-
tuations, and human impacts.

We performed the geochemical analyses at
the Universidad de Antioquia Spectrometry
Laboratory, using an ARL OPTIM'X WDRRF

Spectrometer/Thermo Scientific. The procedure
consisted of grounding samples in an S-1000
RETCH Centrifugal Ball Mill with a zirconi-
um oxide vessel at 3,000 rpm for 5 minutes. The
grounded powder was calcinated at 550 °C for
three hours to determine Loss of Ignition (LOI)
and calculate OC. The geochemical data included
concentrations of ten oxides (SiO,, Al,O;, Fe,0;,
MgO, Na,0, Ca0, K,0, TiO,, P,0;, and MnO) and
22 trace elements (Cl, S, Ba, V, Cu, Zr, Sm, Cr, Zn,
Sr, W, Tb, Ni, Co, La, Rb, Br, Y, Sc, Ga, and Cd).
Measurements were made with the standard and
duplicate samples (Table 1).

The ages at the top, middle, and bottom sections
were determined with the Infrared Stimulated Lu-
minescence (IRsL) technique in the Institute of
Earth and Environmental Sciences laboratory at
the Albert-Ludwigs-University of Freiburg, Ger-
many [23]. The basic sample was prepared in the
Universidad EAFIT photoluminescence laboratory
in Medellin, Colombia. The core was split into two
parts, selecting three samples on the top, middle,
and bottom of the sedimentary sequence. A first
dry process was carried out at 40 °C for 24 hours to
obtain the water content. The robust material was
prepared at the University of Freiburg red-light
adapted laboratory. Before an HCI (30 %) and H,O?

L. Betancurth Montes m J. E. Cafion Barriga
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(30%) treatment, several sieve stages were com- Both coarse and fine fractions were used for age
pleted to remove carbonates and organic matter.  determination procedures.

Table 1. Major (wt %) and trace (ppm) elements composition in the Marriaga Swamp

17,83 16,33 15,20 14,38 13,49 21,22 21,61 19,35
0cC 10,34 9,47 8,82 8,34 7,82 12,31 12,54 11,22
Depth 5,00 33,00 61,00 82,00 113,00 162,00 201,00 219,00
Si0, 41,62 41,16 45,68 45,25 46,41 44,27 46,79 52,39
AlLLO, 20,37 17,89 17,83 18,13 18,64 19,06 19,16 19,41
Fe,0, 11,52 11,27 10,56 10,53 10,50 9,14 8,88 8,38
MgO 3,38 2,86 3,31 3,44 3,37 3,58 3,94 4,04
Na,0 0,94 1,16 1,39 1,50 1,31 2,08 2,43 2,50
Ca0 1,43 1,48 1,75 1,77 1,71 1,71 2,57 2,76
K,0 0,90 0,98 1,25 1,33 1,32 1,40 1,37 1,51
Tio, 0,65 0,67 0,76 0,78 0,76 0,78 0,79 0,74
P,0s 0,32 0,19 0,09 017 0,10 0,27 0,26 0,15
MnO 0,40 0,19 0,11 0,10 0,11 0,09 0,12 om
a 606 3320 3950 4140 2490 6880 7260 4550
S 2630 3840 13100 18900 17000 6370 2610 976
Ba 589 429 497 514 502 810 937 977
v 270 214 206 210 205 253 215 217
Cu 273 261 269 246 254 253 220 207
Ir 123 165 233 197 177 304 380 456
Sm 146 175 150 152 199 170 121 0
Cr 104 138 180 179 194 174 187 166
In 148 134 144 138 142 157 126 122
Sr 111 159 202 200 192 201 260 274
w 108 103 12 105 90 61 0 74
Th 129 121 123 107 153 122 1M 94
Ni m 89 100 m 115 120 113 112
Ar 178 186 146 0 m 149 0 0
Co 65 Al 81 80 72 78 61 38
La ND ND ND ND ND ND ND 65
Rb 27 36 38 44 35 51 37 40
Br 22 48 42 29 26 39 23 14
Y 22 24 27 25 25 26 28 16
Sc 22 20 26 0 21 0 0 29
Ga 1" 20 13 16 17 26 20 18
Cd ND ND ND ND ND ND ND 65

Note. ND: Not detected.
Source: Own elaboration.
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Results and Discussion

Physical Features of Sediments

The 220 cm sedimentary sequence consists of lam-
inated grayish to brownish fine sand, silt, and clay
layers, intercalated with peat layers (Fig. 2). The
ages estimated with the IRSL technique indicate
1,130 + 90 a at the bottom of the core, around 870
+ 70 a in the middle section, and around 530 *
40 a on the top. The core was divided into three
segments, according to sediment features and
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estimated ages: bottom segment (Seg. i: 220-135
cm; 1,130 £ 90 to 870 + 70 a), middle segment (Seg.
ii: 135 cm-70 cm; 870 + 70 to 530 + 40 a), and upper
segment (Seg. iii: 70-0 cm; 530 + recent a).

Seg. i involves the coarser sediments of brown-
ish fine sand to silty sediments, interbedded with
black laminations enriched with organic matter
and mica. Seg. ii comprises grey-brown alterna-
tions of silt and clay sediments with thin sandy
laminations, scarce organic matter, and mica con-
tent. Seg. iii comprises greyish silt with intercala-
tions of clay with poor content of organic matter.

Subdivision OC %
5

o s1

r— Segiii

¢ 3

Segii

-

Seg i

4s7

s - Peat

Fig. 2. Photograph of the core and schematic sedimentary column of Marriaga Swamp sediments. Ages obtained by
IRSL. Segment division is represented by color transparency. Organic carbon content.

Source: Own elaboration

Organic matter content is present in the core,
with values ranging between 7.8 and 12.5%. In
the oldest segment (Seg. i), the organic matter
content is considerably high, as evinced by four
peaty layers. These layers indicate exposure con-
ditions that allowed vegetation cropping between
approx. 1,130 + 90 and 870 + 70 a. In Seg. ii (be-
tween 870 + 70 and 530 * 40 a), the organic matter
is low and relates to a sedimentary sequence of clay

that indicates subaerial and redox conditions. The
coarser sediments in the most recent segment (Seg.
iii) indicate the influence of high-energy flows
feeding the swamp. Seg. iii is characterized by an
increase in organic matter content towards the
surface, approx. 530 + 40 a to present. However,
Seg. iii resembles Seg. ii in terms of grain size and
the absence of clear peaty layers, except for milli-
metric laminations.

L. Betancurth Montes m J. E. Cafion Barriga



Geochemistry

Major elements

Si, Al, Fe, Mg, Na, Ca, and K are associated with a
siliciclastic provenance (Fig. 3). Seg. i (lower part
of the sequence) has high Si, Mg, Na, Ca, and K

Si% Al % Fe % Mg %
40 50 60 15 20 25 5 10 15 2 3
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concentrations, whereas Seg. ii (middle of the se-
quence) shows an increment of Fe and a reduction
of Mg and Na. Seg. iii (upper sequence) exhibits
high Al and Mg concentrations and reductions
in Si and Ca. The patterns of Ca and Mg are more
complex, probably due to the variety of bedrock
sources with detrital and endogenic inputs.

Na % Ca% K % Ti %
40123 1 2 3 0 1 2 03 06 09

Depth (cm)

0 || :' a.

180

200 | &

220

. . . .
\ 1

D Seg i

l:| Seg ii

i\ L
E Seg iii

Fig. 3. Major element concentrations along the Marriaga Swamp sedimentary sequence.

Source: Own elaboration

High concentrations of major elements (Si, Al
K, Ti, and Fe) represent detrital contributions re-
lated to flooding events; high values of Ca demon-
strate sediment reworking during dry periods or
swamp level fluctuations [24], whereas Mg, Cl, and
Na indicate salinity intrusions [25]-[26].

Trace elements

The extended analysis of trace elements exposes
several paleoenvironmental features. Dry and hu-
mid periods, for instance, are related with (Zr+Rb)/
Sr and Ca/Ti ratios; biological productivity is rep-
resented by Mn/Fe, OC/Ti, and Mg/Ca ratios (Fig.
4). Carbonate precipitation employs Ba/Al, Sr/Al,
and Ca/Al ratios (Fig. 5), and the possible anthro-
pogenic impact is associated with Cu, Ni, Zn, Co,
and Cr (Fig. 6).

The (Zr+Rb)/Sr ratio reveals terrigenous inputs,
whereas the Ca/Ti ratio indicates carbonate pro-
duction [26] and the relation with drought in hu-
mid conditions. High (Zr+Rb)/ Sr and Ca/Ti imply
possible drought conditions observed in Seg. i (220
to 160 cm) from 1,130 = 90 and 870 + 70 a, with
a significant fall towards more recent sediments.
A relatively constant humid environment is con-
sistent with these low ratios observed in the upper
120 cm of the core (Seg. ii and Seg. iii).

Biological productivity was important from
1,130 + 90 to 870 + 70 a. The middle to low Mn/Fe
ratio in Seg. i indicates some intermittent, short
periods of paleo-redox conditions (220-160 cm).
Low values of Mn/Fe at 120 to 60 cm in Seg. ii in-
dicate more oxygenated conditions from 870 + 70
to 530 * 40 a. The rise of biological productivity

Paleoenvironmental Interpretation of Last Millennium Sediments in the Marriaga Swamp, Atrato Delta, Colombia
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remains from 60 cm to the surface. Important the surface. The fine lamination of sediments pre-
OC/Ti ratios show high concentrations in Seg. i  served in upper and lower sediments indicates an-
and Seg. iii with a significant decrease at Seg. ii.  oxic conditions in the Marriaga Swamp in Seg. i
The Mg/Ca is relatively high at Seg. iii, close to  and Seg. iii

(Zr+Rb)/Sr CalTi Mn/Fe eloy] Mg/Ca
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Fig. 4. Trace element plots for dry, humid, and biological productivity interpretations.

Source: Own elaboration
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Fig. 5. Trace element plots to interpret carbonate precipitation.

Source: Own elaboration
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Fig. 6. Heavy metal plot to interpret natural source and human impact for Cu, Ni, Zn, Co, and Cr.

Source: Own elaboration

Carbonate precipitation (Fig. 5.), interpreted
from Ba/Al, Sr/Al, and Ca/Al ratios, shows high
Ba/Al profile values in Seg. i (220-120 cm), with
a notable increase in the sequence’s upper sedi-
ments, suggest authigenic processes. The presence
of ion-rich waters and chemical precipitation is
interpreted from Sr/Al and may indicate a saline,
brackish stage in the Marriaga Swamp from 1,130
+90 to 530 + 40 a (220-60 cm), with clear decreas-
ing values from 60 cm to surface.

The brackish state is consistent with the fact
that the Marriaga Swamp could be affected by sea-
water inputs during high tidal conditions. High
values of Ca/Al in the lower sequence (220-60 cm)
correspond to half of Seg. i. Moderate and constant
values from 160 to 60 cm are compatible with half
of Seg. i and whole Seg. ii. A sharp decrease of Ca/
Al occurs in the upper sequence (Seg. iii), consis-
tent with more fluvial inputs.

Heavy metal enrichments have been typical-
ly associated with a human impact [25], but they
could also be associated with natural thresholds
due to bedrock origins [28]-[29]. We considered
that the high values found in the Marriaga Swamp
profile (Fig. 6) are a combination between nat-
ural thresholds from basic bedrock weathering
and specific anthropogenic effects associated with

mining activities upstream the Atrato River that
can incorporate mined sediments during floods
into the Marriaga Swamp [30].

Cu, Ni, Zn, Co, and Cr concentrations were
normalized with average Upper Continental Crust
(ucc) concentrations [31]-[32] and compared to
regional background data (Fig. 7) from stream
sediments sampled by the Geological Survey of
Colombia upstream the Marriaga Swamp in the
Atrato River [33]. The purpose of this normaliza-
tion was to determine if the heavy metal concen-
trations in the Marriaga Swamp showed extreme
thresholds.

The normalization of heavy metals against the
ucc shows that all concentrations are several times
higher than the ucc values, which points to the
possible anomalous enrichment of Cu, Ni, Zn, Co,
and Cr in the swamp. The values for the regional
background are also higher compared to the ucc
and conservatively close to those found in the
Marriaga Swamp sediments, except for Cr, which
is higher for the regional records. Natural leaching
could be one of the causes of the high values in the
Marriaga Swamp sediments, which is also related
to the high Chemical Index of Alteration (c1a) and
the dilution effect of silica that promotes heavy
metal dilutions [34].

Paleoenvironmental Interpretation of Last Millennium Sediments in the Marriaga Swamp, Atrato Delta, Colombia



If human activities were the most substantial
reason for heavy metal enrichment in the Mar-
riaga Swamp, the concentrations would be higher
only in the upper sediments (Seg. ii) after 500 a,
resulting from colonial mining [35]. However, the
values in the profile (Fig. 7) demonstrate a constant

Revista Ciencia e Ingenieria Neogranadina m Vol. 31(1)

presence along with the sequences. Since intense
human presence or activities are not reported in
the area before 500 a in the late Holocene (corre-
sponding to Seg. i and part of Seg. ii: ~1130 + 70 to
500 a), it is unlikely heavy metals are only a contri-
bution of human sources.

10 =
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9 4 —e—9S1 ——3S2 I,.
g | ——S3 --e-54 /
--e-S5 ——S6 &
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Ni Zn Co Cr
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Fig. 7. Ni, Zn, Co, Cr, and regional background normalized against ucc.

Source: Own elaboration

Chemical Index of Alteration (CIA)

The c1a is used as a proxy of weathering grade and
paleoclimatic signal to distinguish humid and arid
conditions [36]-[38]. The c1a has been employed to
examine the relationship between some major ele-
ments and assume the disintegration of feldspars
and further formation of clay minerals during the
weathering processes [39]. We used the c1a to de-
termine the production of detrital sediments and
their contributions to sediment accumulation in
the lacustrine setting of the Marriaga Swamp. The
c1A is the molecular percentage of principal (ox-
ides) elements (Equation 1):

_ Al203
T Al203+Ca0*+Na20+K20

CIA X100 @)

Where ALO,, Na,O, and K,O are the mole
percentage and CaO* is the calcium content of
silicates.

An increase in c1A values is generally attribut-
ed to climatic fluctuations from cold to warm and
humid [40]-[41]. For the Marriaga Swamp, the cia
is in a medium range for the lower sedimentary
sequence (220-162 cm) and high over 162 cm to
near-surface (Fig. 8). The c1a increases within the
medium range from bottom to upper sequences,
indicating climatic changes from 1,130 £ 90 a to
present, from more arid and maybe colder condi-
tions in late Holocene to humid and warmer con-
ditions nowadays.

L. Betancurth Montes m J. E. Cafion Barriga
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Fig. 8. Al/Na ratio versus cIA for the Marriaga Swamp sediments.

Source: Own elaboration

The c1A ranges hint at low weathering from 0 to
40, moderate from 40 to 70, and high from 70 to 100
[40]. The Marriaga Swamp cIa values range from
65 to 82, with an average of 72, which means the
Marriaga Swamp sediments are highly weathered.

Statistical analysis

We applied a Pearson correlation to identify the
statistical significance association (r > 0.70; p-val-
ue > 0.05) between OC, depth, major elements, and
trace elements (Table 2). The results can be clus-
tered in three main groups: 1) OC has a positive
correlation with Na and Ba, concerning organic

features and biological productivity, 2) Si, Fe, Mg,
Na, Ca, K, Ba, Cl, and Cu are positively correlated
with depth, concerning the interpretation of bed-
rock components, and 3) Cr, Zn, and Co, related
with heavy metal inputs.

A Principal Component Analysis (pca) of the
variables OC, depth, major elements, and trace el-
ements (Fig. 9) reveal that pc-1 explains 54 % of the
total variance and is positively linked to Al, OC,
Ba, Na, Mg, Ca, Si, Cl, K, Ti, Cl, and depth and
negatively linked to Fe, Cu, Zn, Co, and S. pc-2 ac-
counts for 24.1 % of the total variance and is posi-
tively linked to Mg and P and negatively linked to
Cu, Zn, Co, S, Cr, Ti, K, Cl, and Si.

0.41

-0.39

03 -0.2 -041

0 01 02 03
PC1 (54%)

Fig. 9. Biplot of pc-1 versus pc-2 for OC, depth, major and trace elements in the Marriaga Swamp.

Source: Own elaboration
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The positive values of pc-1 indicate more de-
trital and allochthonous components, whereas the
negative values denote more anoxic conditions
and heavy metal components, which also could
justify the humid and dry alternations inside the
Marriaga Swamp. Positive values of PC-2 may im-
ply an endogenic precipitation process, supported
by the Mg and P, whereas negative values of PC-2
suggest heavy metal precipitation, combined with
saline-brackish swamp regimes.

Geochemical signatures in northwestern
Colombia during the Late Holocene

The Marriaga Swamp sedimentary sequence anal-
yses contribute and complement the paleoenviron-
mental reconstructions for northwestern Colombia
[42]-[43]. This research specifies the alternation of
humid and dry conditions in the Atrato River delta
setting in the last millennium. These climatic al-
ternations are consistent with the migration of the
1rcz during the Holocene in the north of South
America [44]-[46].

Based on geochemical proxies such as the os-
cillations of Si, Al, K, and Ti (representing detri-
tal inputs) and Ba/Al and Sr/Al ratios, we identify
different authigenic lacustrine and allochthonous
processes in the Marriaga Swamp. The lower se-
quence (Seg. iii), for instance, is characterized by
the predominance of a dry (arid) phase, where the
high OC represents the potential for lamination of
fine sand (coarsest sediments of the sequence) [47].
Sediment reworking and carbonate precipitations
also occur at the lower end of the sequence, as il-
lustrated by the Ca/Al ratio and the high concen-
trations of heavy metals (Cu, Ni, Co, Zn, and Cr).

On the other hand, Seg. ii represents a tran-
sition period between dry to moderately humid
conditions. This part of the sedimentary sequence
exhibits a light decrease in detrital inputs (Si, Al
K, Ti, and Fe) and a reduction of OC and carbon-
ate production, represented by a low, Ca/Ti ratio
and the deposition of finer sediments (wide clay
layer interbedded with some coarser lamination
towards 90 cm deep).

The upper sequence (Seg. iii) is the clearest
sedimentary section representing more humid

Revista Ciencia e Ingenieria Neogranadina m Vol. 31(1)

conditions and fluvial influence, with a signifi-
cant drop of detrital Si, rise of Al, and moderate
presence of Na and Ca. A rise in biological pro-
ductivity is inferred by high Fe concentrations
and Mg/Ca ratios. However, the tidal influence is
represented by high Ba/Al ratios towards the low-
est part of the sequence (< 25 cm). Concentrations
of heavy metals also prove an increase of Cu, Ni,
and Zn for Seg. iii, possibly related to human ac-
tivities such as mining, whereas the reduction of
Cr and Co could be interpreted as the influence of
intense weathering and dilution of natural sources
for these two metals.

Conclusions

The sedimentary sequence and the geochemistry
of the Marriaga Swamp expose significant envi-
ronmental changes that occurred during the last
1130 a in the Atrato River delta. Detrital contri-
butions portray flooding events, generally associ-
ated with high concentrations of Si, AL, K, Ti, and
Fe in sediments. In contrast, high concentrations
of Ca reveal the possibility of sediments rework-
ing during dry periods and level fluctuations in
the Marriaga Swamp. Biological productivity
manifests in the high contents of organic car-
bon and high carbonate precipitation (Mg/Ca).
Higher Ca/Al, Sr/Al, and Ba/Al ratios are also
indicative of endogenic calcite precipitation. The
presence of high concentrations of heavy met-
als (Cu, Zn, Co, Ni, and Cr) along the entire se-
quence of the Marriaga Swamp sediments imply
that their origin is likely a combination of natural
bedrock sources and human impacts, especially
towards the more recent deposits. High regional
background concentrations for the same metals
suggest natural enrichments of these heavy met-
als due to dilution processes in the sources that
feed the swamp. The c1a is high along the sed-
imentary sequence, with a remarkable increase
towards the surface, which points to a transi-
tion from arid to more humid conditions. The
statistical correlations show three main clusters
that distinguish among organic and biological
productivity, bedrock source components, and
heavy metal inputs.
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