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A Systematic Review of Deep Learning 
Methods Applied to Ocular Images
Oscar Julián Perdomo Charrya ■ Fabio Augusto Gonzálezb

Abstract: Artificial intelligence is having an important effect on different areas of medicine, and oph-
thalmology is not the exception. In particular, deep learning methods have been applied successfully 
to the detection of clinical signs and the classification of ocular diseases. This represents a great 
potential to increase the number of people correctly diagnosed. In ophthalmology, deep learning 
methods have primarily been applied to eye fundus images and optical coherence tomography. On 
the one hand, these methods have achieved outstanding performance in the detection of ocular 
diseases such as diabetic retinopathy, glaucoma, diabetic macular degeneration, and age-related 
macular degeneration. On the other hand, several worldwide challenges have shared big eye imag-
ing datasets with the segmentation of part of the eyes, clinical signs, and ocular diagnoses per-
formed by experts. In addition, these methods are breaking the stigma of black-box models, with the 
delivery of interpretable clinical information. This review provides an overview of the state-of-the-art 
deep learning methods used in ophthalmic images, databases, and potential challenges for ocular 
diagnosis.
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Una revisión sistemática de métodos de aprendizaje profundo 
aplicados a imágenes oculares

Resumen: La inteligencia artificial tiene un importante impacto en diversas áreas de la medicina, 
y la oftalmología no ha sido la excepción. En particular, los métodos de aprendizaje profundo han 
sido aplicados con éxito en la detección de signos clínicos y la clasificación de enfermedades ocula-
res. Esto representa un impacto potencial en el incremento de pacientes correcta y oportunamente 
diagnosticados. En oftalmología, los métodos de aprendizaje profundo se han aplicado principal-
mente en imágenes de fondo de ojo y tomografía de coherencia óptica. Por un lado, estos métodos 
han logrado un rendimiento sobresaliente en la detección de enfermedades oculares tales como la 
retinopatía diabética, el glaucoma, la degeneración macular diabética y la degeneración macular 
relacionada con la edad. Por otro lado, varios desafíos mundiales han compartido grandes conjuntos 
de datos con segmentación de parte de los ojos, signos clínicos y el diagnóstico ocular realizado por 
expertos. Adicionalmente, estos métodos han venido rompiendo el estigma de los modelos de caja 
negra, proveyendo información clínica interpretable. Esta revisión proporciona una visión general de 
los métodos de aprendizaje profundo de última generación utilizados en imágenes oftálmicas, bases 
de datos y posibles desafíos para los diagnósticos oculares.

Palabras clave: hallazgos clínicos; enfermedades oculares; bases de datos oculares, aprendizaje 
profundo; diagnóstico clínico
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1. Introduction 
The diagnosis of an ophthalmologic disease is done 
through different kinds of clinical exams. Exams 
may be non-invasive such as slit-lamp exam, visual 
acuity, eye fundus image (EFI), ultrasound, optical 
coherence tomography (OCT); or invasive exams 
as fluorescein angiography [1]. Non-invasive clini-
cal exams are easier to take, have no contraindica-
tions and do not affect the eye’s natural response to 
external factors in comparison to invasive exams. 
Therefore, EFI and OCT exams are high-patient 
compliant, quick and simple techniques, with the 
main advantages that images can be easily saved 
to be analyzed at a later time, and the prognosis, 
diagnosis and follow-up of diseases can be moni-
tored over time.

Automatic analysis of EFIs and OCTs as a tool 
to support medical diagnosis has become an engi-
neering challenge in terms of achieving the best 
performance, the lowest computational cost and 
lowest runtime among the different algorithms 
[2-6]. Thus, the choice of the best method to rep-
resent, analyze and make a diagnosis using ocular 
images is a complex computational problem [7-11]. 
On the other hand, deep learning techniques have 
been applied with some success to several eye con-
ditions using as evidence individual sources of 
information [12-14].

Some researchers have studied how to sup-
port the diagnosis with different methodologies. 
Vandarkuhali and Ravichandran [2] detected the 
retinal blood vessels with an extreme learning 
machine approach and probabilistic neural net-
works, Gurudath et al. [12] worked with machine 
learning identification from fundus images with a 
three-layered artificial neural network and a sup-
port vector machine to classify retinal images, and 
Priyadarshini et al. studied clustering and classifi-
cations with data mining to give some useful pre-
diction applied to diabetic retinopathy diagnosis 
[3]. Despite good results, the main problem with 
these works is that datasets are small and the need 
for labels is expensive and cumbersome work.

Deep learning (DL) offers some advantages 
such as the processing of lots of images with the 
use of graphic processing units (GPU) and tensor 

processing units (TPU); and the ability to auto-
matically learn data representation from raw data. 
Thanks to these features, DL has been able to out-
perform traditional methods in several computer 
vision and image analysis tasks. This success has 
motivated its application to medical image analy-
sis including, of course, ophthalmology images.

This article focuses on the review and analysis 
of deep learning methods applied to ocular images 
for the diagnosis of diabetic retinopathy (DR), 
glaucoma, diabetic macular edema (DME) and 
age-related macular degeneration (AMD). These 
diseases are related with diabetes as one of the four 
major types of chronic noncommunicable disease 
and they are the leading cause of blindness world-
wide in productive age (20-69 years), with the main 
problem that 25 % of diabetics worldwide will have 
visual problems along diabetes, and without a pre-
ventive diagnosis and treatment promptly, these 
subjects will suffer irreversible blindness [15-20].

The paper is organized as follows: Section 2 
contains an overview of ocular diseases medical 
background with their corresponding informa-
tion sources. Section 3 summarizes free public-
available ocular datasets. Section 4 summarizes 
the most common performance metrics used by 
deep learning methods. In addition, Section 5 
reports on the main deep learning methods for 
each source of medical information. Finally, Sec-
tion 6 discusses the main results, limitations, and 
future works. 

2. Medical background

2.1 Ocular diseases

2.1.1 Diabetic retinopathy
Diabetic retinopathy is caused by a diabetes side-
effect which reduces blood supply to the retina, 
including lesions appearing on the retinal surface 
[21]. DR-related lesions can be categorized into i) 
red lesions such as microaneurysms and hemor-
rhages, and ii) bright lesions such as exudates and 
cotton-wool spots [22], as shown in Figure 1. 
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2.1.2 Diabetic macular edema
The diabetes macular edema is a complication of 
DR that occurs when the vessels of the central part 
of the retina (macula) are affected by the accumu-
lation of fluid and exudate formation in different 
parts of the eye [25], as depicted in Figure 2.

2.1.3 Glaucoma
The glaucoma is related to the progressive degen-
eration of optic nerve fibers and structural changes 
of the optic nerve head [21]. Although glaucoma 
cannot be cured, its progression can be slowed 
down through treatment. Therefore, the timely 

Fig. 1. [Left] A color eye fundus image showing multiple microaneurysms, intraretinal hemorrhages, and 
exudation affecting the fovea in a patient with severe non-proliferative diabetic retinopathy with severe 
diabetic macular edema, and [Right] A b-scan OCT showing vitreomacular traction affecting the foveal 
depression. 
Source: Taken from [24].

Fig. 2. [Left] A color eye fundus image showing multiple dot and flame hemorrhages, cotton wool spots 
and macular exudation in a patient with severe non-proliferative diabetic retinopathy with diabetic macu-
lar edema, and [Right] A b-scan OCT showing multiple intraretinal hyperreflective dots and pseudo-cystic 
spaces in the middle retinal layers in a patient with diabetic macular edema. 
Source: Taken from [26] and [27].
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diagnosis of this disease is vital to avoid blindness 
[28-29]. Glaucoma diagnosis detection is based 
on manual assessment of the Optic Disc (OD) 
through ophthalmoscopy, looking morphological 
parameters for the central bright zone called the 
optic cup and a peripheral region called the neuro-
retinal rim [30], as reported in Figure 3. 

2.1.4 Age-related macular degeneration
The age-related macular degeneration (AMD) 
causes vision loss at the central region and distor-
tion at the peripheral region [21]. The main symp-
tom and clinical indicator of dry AMD are drusen. 
The major symptom of wet AMD is the presence of 
exudates [33], as presented in Figure 4. 

Fig. 3. [Left] An optic disc color image showing an absence of the neural ring with a total excavation in a 
patient with advanced glaucoma, and [Right] A b-scan OCT showing a thinning in the nerve fiber layer in a 
patient with Glaucoma.
Source: Taken from [31] and [32].

Fig. 4. [Left] A color eye fundus image showing multiple flame hemorrhages, cotton wool spots and ma-
cular exudation, and [Right] A b-scan OCT showing the presence of soft drusen in the EPR-choriocapillaris 
complex in a patient with Age-related Macular Degeneration.
Source: Taken from [34] and [35].
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Fig. 5. EFI and OCT volume containing cross-sectional b-scans from a healthy subject.
Source: Taken from [46].

2.2 Medical information sources
There are different types of clinical exams for the 
diagnosis of ocular disease. Some researchers doc-
umented eye digital signal and image processing 
techniques such as electrooculogram (EOC) [36], 
electroretinogram (ERG) [37-38], visual evoked 
potentials [39-42], dynamic pupillometry [43-44], 
among other methods [45].

The two non-invasive techniques widely used 
by the ophthalmologist to diagnose the ocular con-
dition are EFIs and OCT. On the one hand, the eye 
fundus is represented as a 2D image of the eye that 
allows checking faster and easily parts of the eyes 
(i.e. optic disc, blood vessels, and others), but also 
some retinal abnormalities (i.e. microaneurysms, 
exudates, among others). On the other hand, the 
OCT uses near-infrared light based on low coher-
ence interferometry principles to record the set of 

retinal layers. The OCT depicts the information in 
a 3D volume with a resolution of a cross-sectional 
area with a defined number of scans as shown in 
Figure 5. In the two cases, the diagnosis performed 
by experts depends crucially on the clinical find-
ings located during the exam.

3. Ocular image datasets
In recent years, the detection of clinical signs and 
the grading of ocular diseases have been consid-
ered engineering challenging tasks. In addition, 
worldwide researchers have published their meth-
ods and a set of EFIs and OCTs databases with dif-
ferent ocular conditions, population, acquisition 
devices and image resolution. The available ocular 
datasets for each ocular disease, the type of ocular 
image and the study population are presented in 
Table 1.
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Table 1. A summary of free public ocular datasets with ocular diseases graded by experts, dataset names and da-
taset descriptions.

Ocular disease Dataset Dataset description

DR

 [47] 40 eye fundus images with a resolution of images are 768 x 584 pixels. The dataset contains 7 
images graded by experts as mild DR and 33 images as normal. 

 [48]
130 eye fundus images with 110 DR and 20 normal images. The images labeled as DR contain the 
segmentation of clinical signs: hard exudates, soft exudates, microaneurysms, hemorrhages, and 
neovascularization.

 [49] 89 eye fundus images where 84 images have mil DR and 5 images labeled as normal.

[50] 100 digital color fundus images with microaneurysms in all the images. This dataset was randomly 
split into training and test datasets with 50 images.

[51] 28 eye fundus images with two blood vessel segments performed by experts.

[52]
Two subsets: a set of 47 eye fundus images with the segmentation of exudates and 35 images 
without lesions labeled as normal. The second set has 148 images with microaneurysms and 233 
images labeled as normal.

[53] Two subsets: the training set has 35126 and the test set has 53576. The images were labeled as 
normal, mild, moderate, severe and proliferative DR.

[54] 13000 images with normal, mild, moderate, severe and proliferative DR.

DR, Glaucoma
[55] 49 eye fundus images with the optic head segmentation and the grading of DR and glaucoma.

[56] 45 eye fundus images with 15 healthy, 15 DR and 15 glaucomatous subjects. The images have the 
detection and segmentation of clinical signs provided by experts.

DR, DME
[26] 1200 eye fundus images with DR and DME labels performed by an expert.

[23] 516 images with a resolution of 4288x2848 pixels with the grading of DME and DR performed by 
experts.

DR, AMD

[57-58] 400 eye fundus images and 400 black and white masks with blood vessel annotations.

[59-60] 143 color fundus images with a resolution of 768x576 pixels. The images were grading as 23 AMD, 
59 DR, and 61 normal images.

[61] 500 OCTs with normal, macula hole, AMD, central serous retinopathy and DR.

Glaucoma

[62] 110 color fundus images with optic nerve head segmentation. The images were labeled as 26 
glaucomatous and 84 with eye hypertension.

[63] 650 eye fundus images with the classification of glaucoma condition.

[64] 40 color images with the blood vessels, optic disc, and arterio-venous reference.

[31] 783 images with glaucomatous, suspicious of glaucoma and normal conditions.

[65] 258 eye fundus images with 144 normal and 114 glaucomatous subjects.

[66-67] 101 images with optic disc and optic cup segmentation and glaucoma condition.

[68] 760 retinal fundus images with glaucoma labels.

[69] 1200 eye fundus images with optic disc and cup segmentation with normal and glaucoma 
conditions.

[32] 1110 scans where 263 were diagnosed as healthy and 847 with primary open-angle glaucoma 
(POAG). 

AMD

[70] 206500 eye fundus images with AMD and non-AMD conditions.

[34] 1200 eye fundus images with early AMD and non-AMD conditions.

[35] 385 OCTs with 269 AMD and 115 normal subjects. Each OCT volume has 100 B-scan with a resolution 
of 512x1000 pixels.

[71] 15 OCT volumes with the retinal layer segmentation performed by an expert. The database was 
labeled with AMD condition.

Coninued
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4. Performance methods 
Deep learning approaches have shown astonish-
ing results in problem domains like recognition 
system, natural language processing, medical sci-
ences, and in many other fields. Google, Facebook, 
Twitter, Instagram, and other big companies use 
deep learning in order to provide better applica-
tions and services to their customers [75]. Deep 
learning approaches have active applications using 
Deep Convolutional Neural Networks (DCNN) 
in object recognition [76–79], speech recognition 
[80–82], natural language processing [83], theo-
retical science [84], medical science [85-86], etc. 
In the medical field, some researchers apply deep 
learning to solve different medical problems like 
diabetic retinopathy [86], detection of cancer cells 
in the human body [87], spine imaging [88] and 
many others [89-90]. Although unsupervised 
learning is applicable in the field of medical science 
where sufficient labeled datasets for a particular 
type of the disease are not available. In particular, 
the state-of-the-art methods in ocular images are 
based on supervised learning techniques.

4.1 Performance metrics in deep 
learning models
The performance comparison of deep learning 
methods in classification tasks is performed by 
the calculation of statistical metrics. These metrics 
assess the agreement and disagreement between 
the expert and the proposed method to grade an 
ocular disease [35,62,74]. The performance metrics 

used in state-of-the-art works are presented in 
Equations (1 - 7) as follows:

 
(1)

 
(2)

 (3)

(4)

(5)

 (6)

(7)

where,

TP =  True positive (the ground-truth and 
predicted are non-control class)

TN =  True Negative (the ground-truth and 
predicted are control class)

FP =  False Positive (predicted as a non-control 
class but the ground-truth is control class)

FN =  False Negative (predicted as control class 
but the ground-truth is non-control class)

po =  Probability of agreement or correct 
classification among raters.

pe =  Probability of chance agreement among 
raters.

Ocular disease Dataset Dataset description

DME [72] 169 eye fundus images with mild, moderate and severe DME.

DME, AMD

[27] 45 OCTs with 15 AMD, 15 DME, and 15 normal subjects. Each OCT volume has 100 B-scan with a 
resolution of 512x1000 pixels.

[73] 148 OCTs as follows: 50 DME, 50 normal and 48 AMD subjects.

[74] 109309 scans of subjects with DME, drusen, choroidal neovascularization and normal conditions.

DME, AMD, DR [24] 75 OCTs labeled as 16 normal, 20 DME and 39 DR-DME. The OCT volume contains 128 B-scans with a 
resolution of 512x1024 pixels.

DR, AMD, 
Glaucoma [46] 231806 OCTs and eye fundus images with the labels of glaucoma, DR and AMD.

Source: Compiled by the authors.
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5. Deep learning methods  
for diagnosis support

5.1 Dl methods using eye  
fundus images
The state-of-the-art DL methods to classify ocular 
diseases using EFIs are focused on conventional 
or vanilla CNN and multi-stage CNN. The most 
common vanilla CNN used with EFIs are the pre-
trained inception-V1 and V3 models on the Ima-
geNet database (http://www.image-net.org/). The 
inception-V1 is a CNN that contains different sizes 
of convolutions for the same input to be stacked as 
a unique output. Another difference with normal 
CNN is that the inclusion of convolutional layers 
with kernel size of 1x1 at the middle and global 
average pooling at the final of its architecture [79]. 
On the other hand, inception-V3 is an improved 
version batch normalization and label smoothing 
strategies to prevent overfitting [91].

[94] used the U-Net model proposed by [92] 
to segment the retinal vessel from EFIs. Then, 
two new datasets were created with and without 
the vessels to be used as inputs in the inception-
V1. This method obtained an AUC of 0.9772 in 
the detection of DR in the DRIU dataset. [96] and 
[98] proposed a patch-based model composed 
of pre-trained inception-V3 to detect DR in the 
EyePAC dataset. [98] used a private dataset with 

segmentations of clinical signs to classify an EFI 
into normal or referable DR with a sensitivity of 
93.4 % and specificity of 93.9 %. The ensembled of 
four inception-V3 CNN by [96] reached an accu-
racy of 88.72 %, a precision of 95.77 % and a recall 
of 94.84 %.

The multistage CNN is centered first on the 
detection of clinical signs to sequentially grade 
the ocular disease. [95] located different types of 
lesions to integrate an imbalanced weighting map 
to focus the model attention in the local signs to 
classify DR obtaining an AUC of 0.9590. [97] used 
a similar approach to generate heat maps with the 
detected lesion as an attention model to grade in 
an image-level the DR with an AUC of 0.954. [99] 
uses a four-layers CNN as a patches-based model to 
segment exudates and the generated exudate mask 
was used to diagnose DME reporting an accuracy 
of 82.5 % and a Kappa coefficient of 0.6. Then, [104] 
proposes a three-stage DL model: optic and cup 
segmentation, morphometric features estimation 
and glaucoma grading, with an accuracy of 89.4 %, 
a sensitivity of 89.5 % and a specificity of 88.9 %. 
Finally, [101] proposed a model to segment optic 
disc and cup and calculate a normalized cup-disc-
ratio to discriminate healthy and glaucomatous 
optic nerve of EFIs. Table 2 presents a brief sum-
mary of DL methods in eye fundus images used to 
support an ocular diagnosis.

Table 2. An overview of the main state-of-the-art DL methods to ocular diagnosis using EFIs. Dataset and method 
used in the study are included with method performance.

Ocular disease Dataset used Authors Methods Performance

DR

DRIVE
[93] Gaussian Mixture Model with an 

ensemble classifier AUC: 0.94

[94] Pre-trained Inception V1 AUC: 0.9772

EyePACS [95] DCNN with two stages AUC: 0.9590.

[81] [96] An ensemble of 4 pre-trained 
Inception V3 

Acc.: 88.72 %; 
Precision: 95.77 %; Recall: 94.84 %

EyePACS & 
E-OPHTHA [97] Two linked DCNN

AUC: 0.954
and AUC: 0.949
respectively.

Continued



18  ■  O. J. Perdomo Charry ■  F. A. González

Revista Ciencia e Ingeniería Neogranadina  ■  Vol. 30(1) 

5.2. Dl methods using optical 
coherence tomography
The most representative DL methods to detect 
abnormalities in OCT obtained an outstand-
ing performance using vanilla CNN models as 
reported with ResNet [35,106], VGG-16 [111] and 
Inception-V3 [110]. VGG-16 CNN contains five 
blocks of convolutional layers and max-pooling to 
perform feature extraction [78]. The final block is 
composed of three fully connected layers to dis-
criminate among a number of classes. The ResNet 
model contains a chain of interlaced layers that 
adds the information from previous layers to 
future layers to learn residuals errors [112].

[106] used a pre-trained ResNet to differenti-
ate healthy OCT volumes from DR with an accu-
racy of 97.55 %, a precision of 94.49 %, and a recall 
of 94.33 %. [24] combined the Inception and the 
ResNet model into a model termed as inception-
ResNet-V2. This model was able to classify DME 
scans with an accuracy of 100 % using the SERI 
dataset.

On the other hand, the best DCNN model 
using OCT volumes as input are customized mod-
els with two or three stages. In particular, these 
DL models used two or more datasets reported in 

Table 1 to perform feature extraction of local signs, 
added to a classification stage for grading the ocu-
lar diseases as reported for OCTs in [105-107]. 

[110] defined a two-stage DL method to seg-
ment abnormalities from the OCT volume into 
a 3D representation. The generated segmentation 
was stacked with the 43 most representative cross-
sectional scans from an OCT volume. This model 
obtained an AUC of 0.9921 to determine the grade 
of AMD in private datasets. Finally, [109] pro-
posed a customized DL method called OctNet. 
This CNN is based in four blocks of convolutional 
and max-pooling layers, and a final block with two 
dense layers and a dropout layer to avoid overfit-
ting during training. In addition, the proposed 
model classifies in scan and volume levels, deliv-
ering highlighted images with the most relevant 
areas for the model. The model was assessed for 
DR and DME detection with a precision of 93 %, 
an AUC of 0.86 and a Kappa agreement coefficient 
of 0.71. The proposed model presented a sensitivity 
of 99 % and an AUC of 0.99 for the classification 
task of OCT volumes as healthy and AMD. Table 3 
reports an overview of the most prominent works 
used to support the diagnosis of ocular conditions 
using OCTs.

Ocular disease Dataset used Authors Methods Performance

DR
EYEPACS & 

MESSIDOR & 
Private dataset

[98] A pre-trained Inception V3 Sensitivity: 93.4 %; Specificity: 93.9 %.

DME MESSIDOR & 
OPHTHA [99-100] DCNN with two stages Acc.: 82.5 %

Kappa: 0.6

Glaucoma

DRISHTI-GS
& REFUGE [101] DCNN with two stages AUC: 0.8583

DRISHTI-GS & 
RIM-ONE

[102]
Classical filters and an active disc 
formulation with a local energy 
function

Acc.: 0.8380 and 0.8456.

[102-103] DCNN with three stages
Accuracy: 89.4 %; Sensitivity: 89.5 %; 
Specificity: 88.9 %;
Kappa: 0.82

AMD AREDS [104] DCNN Acc.: 75.7 %

Source: Compiled by the authors.
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6. Discussion
This review reports the deep learning state-of-the-
art works applied to EFIs and OCT for ocular diag-
nosis as presented in Tables 2 and 3. The main DL 
methods in the detection of ocular diseases using 
EFIs are focused on the fine-tuning of pre-trained 
CNNs such as Inception V1 [94] and Inception V3 
[96]. In addition, the pre-trained CNNs applied 
to OCT obtained an outstanding performance as 
reported with pre-trained ResNet [35,105], VGG-
16 [111] and Inception V3 [74]. Thus, the feature 
extraction stage performed by CNNs using a non-
medical domain dataset from ImageNet is enough 
to discriminate healthy and unhealthy patterns 
from ocular images. On the other hand, the best 
CNN models using OCT volumes as input are cus-
tomized models with two or three stages. In par-
ticular, these DL models used two or more ocular 
medical datasets reported in Table 1 to perform 
the feature extraction of local signs, added to a 
classification stage for grading the ocular diseases 
as reported for EFIs in [95,97,99-103] and for OCTs 
in [106-109].

The number of free public available datasets 
contributes to the design of new DL methodolo-
gies to classify ocular conditions as reported in 
Table 1. However, the use of a private dataset lim-
its the comparison among performance metrics 
reached by DL methods [74,98,110-111]. The rep-
lication of studies reported by [98] and [110] have 
been criticized for the lack of information related 
to the description of the method and the hyperpa-
rameters used [113]. The use of public repositories 
as GitHub (https://github.com/) to share datasets 
and codes is still a need.

Nowadays, the growing interest of big tech-
nology companies and medical centers to create 
open challenges has increased the number of ocu-
lar datasets such as the DR detection by Kaggle 
[53,84], the blindness detection by the Asia Pacific 
Tele-Ophthalmology Society (APTOS) [54] and 
iChallenge for AMD detection by Baidu [34]. These 
new datasets contain diverse information related 
to acquisition devices, image resolution, and 
worldwide population. Moreover, DL techniques 
are leveraging the new data to the design of new 

Table 3. An overview of the main state-of-the-art DL methods to ocular diagnosis using OCTs. Datasets and the 
methods used in the study with methods performance.

Ocular disease Dataset Authors Methods Performance

DR OCTID [105] Pre-trained ResNet model Accuracy: 97.55; Precision: 94.49;
Recall: 94.33.

DME
SERI [35] Pretrained Inception-ResNet-V2 Accuracy: 100 %

SERI+CUHK [106-107] OCTNET with 16 layers, class activation 
maps and medical feedback

Precision: 93.0 %; Kappa: 0.71;
AUC: 0.86

Glaucoma POAG [62] A 3D-DCNN with 6 layers AUC: 0.89

AMD

A2A SD-OCT
[108] HOG Feature Extraction and PCA, with 

SVM and Multi-Instance SVM classifiers
Accuracy: 94.4 %, 
Sensitivity: 96.8 % Specificity: 92.1 %

[108-109] OCTNET with 16 layers, class activation 
maps and medical feedback

Sensitivity: 99 %;
AUC: 0.99

Private dataset

[110] DCNN with two stages by Google AUC: 0.9921

[111] Pretrained VGG-16 model AUC: 0.9382

[74] Pretrained Inception-V3 model AUC:0.9745;
Accuracy: 93.45 %. 

Source: Compiled by the authors.
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robust approaches with outstanding performances 
as reported in Tables 2 and 3.

The lack of validation of DCNN models with 
real-world scans or fundus images is still a prob-
lem. We found a couple of methods validated with 
ocular images from medical centers [96, 108-111]. 
However, the number of free public real-world 
ocular images is limited to five sets of images 
[31,46,53-54,74]. The clinical acceptance of the 
proposed DCNN models depends critically on the 
validation in clinical and nonclinical datasets.

Conclusions
deep Learning methods are novel techniques that 
detect and classify different abnormalities in eye 
images with great potential to effectively ocular 
disease diagnosis. These methods take advantage 
of a large number of available datasets with differ-
ent annotations of clinical signs and ocular dis-
eases to perform the automatic feature extraction 
that supports medical decision making. 

In the medical context, new devices such as 
Optical Coherence Tomography-Angiography 
(OCTA) require new models to represent and 
extract features that support the prognosis, diag-
nosis and follow-up of ocular diseases. Hence, the 
design of deep learning methods that use multi-
modal information such as clinical reports, physi-
ological data and other medical images is still an 
important issue. The validation of DL methods 
in the clinical environment with real-world data-
sets and images acquired using low-cost devices 
could improve the social impact of the methods 
developed.

Despite the outstanding results, there are some 
open challenges with these methods related to the 
interpretability and the feedback of medical per-
sonnel to the models. In addition, the application 
of DL models in medical centers could potentially 
increase the number of subjects diagnosed with 
the consequent improvement in the quality of life 
of the population. Realizing the potential of these 
techniques requires a coordinate, interdisciplinary 
effort of engineers and ophthalmologists focused 
on the patient to optimize the medical diagnosis 
time and costs.
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