
107

A Hardware Accelerator for The Inference
of a Convolutional Neural Network
Edwin Gonzáleza ■ Walter D. Villamizar Lunab ■ Carlos Augusto Fajardo Arizac

Abstract: Convolutional Neural Networks (CNNs) are becoming increasingly popular in deep learning
applications, e.g. image classification, speech recognition, medicine, to name a few. However, CNN
inference is computationally intensive and demands a large number of memory resources. This work
proposes a CNN inference hardware accelerator, which was implemented in a co-processing scheme.
The aim is to reduce hardware resources and achieve the best possible throughput. The design is
implemented in the Digilent Arty Z7-20 development board, which is based on the Xilinx Zynq-7000
System on Chip (SoC). Our implementation achieved a of accuracy for the MNIST database using only
a 12-bits fixed-point format. Results show that the co-processing scheme operating at a conserva-
tive speed of 100 MHz can identify around 441 images per second, which is about 17 % times faster
than a 650 MHz - software implementation. It is difficult to compare our results against other Field-
Programmable Gate Array (FPGA)-based implementations because they are not exactly like ours.
However, some comparisons, regarding logical resources used and accuracy, suggest that our work
could be better than previous ones. Besides, the proposed scheme is compared with a hardware
implementation in terms of power consumption and throughput.

Keywords: CNN; FPGA; hardware accelerator; MNIST; Zynq

Received: July 12th, 2019 Accepted: October 31st, 2019

Available online: July 15th, 2020

How to cite: E. González, W. D. Villamizar Luna, and C. A. Fajardo Ariza, “A Hardware Accelerator for the
Inference of a Convolutional Neural network”, Cien.Ing.Neogranadina, vol. 30, no. 1, pp. 107-116, Nov. 2019.

a Universidad Industrial de Santander. E-mail: edwin.gonzalez4@correo.uis.edu.co
ORCID: https://orcid.org/0000-0003-2217-9817

b Universidad Industrial de Santander. E-mail: walter.villamizar@correo.uis.edu.co
ORCID: https://orcid.org/0000-0003-4341-8020

c Universidad Industrial de Santander. E-mail: cafajar@uis.edu.co
ORCID: https://orcid.org/0000-0002-8995-4585

Editorial
Neogranadina

DOI: https://doi.org/10.18359/rcin.4194

enero - julio 2020 ■ ISSN: 0124-8170 ▪ ISSN-e: 1909-7735 ■ pp. 107-116

2019
Vol. 30(1)

Ciencia e
Ingeniería

Neogranadina

https://doi.org/10.18359/rcin.3495

108

Acelerador en hardware para la inferencia de una red neuronal
convolucional

Resumen: las redes neuronales convolucionales cada vez son más populares en aplicaciones de
aprendizaje profundo, como por ejemplo en clasificación de imágenes, reconocimiento de voz, me-
dicina, entre otras. Sin embargo, estas redes son computacionalmente costosas y requieren altos
recursos de memoria. En este trabajo se propone un acelerador en hardware para el proceso de
inferencia de la red Lenet-5, un esquema de coprocesamiento hardware/software. El objetivo de la
implementación es reducir el uso de recursos de hardware y obtener el mejor rendimiento computa-
cional posible durante el proceso de inferencia. El diseño fue implementado en la tarjeta de desarro-
llo Digilent Arty Z7-20, la cual está basada en el System on Chip (SoC) Zynq-7000 de Xilinx. Nuestra
implementación logró una precisión del 97,59 % para la base de datos MNIST utilizando tan solo 12
bits en el formato de punto fijo. Los resultados muestran que el esquema de co-procesamiento, el
cual opera a una velocidad de 100 MHz, puede identificar aproximadamente 441 imágenes por se-
gundo, que equivale aproximadamente a un 17 % más rápido que una implementación de software a
650 MHz. Es difícil comparar nuestra implementación con otras implementaciones similares, porque
las implementaciones encontradas en la literatura no son exactamente como la que realizó en este
trabajo. Sin embargo, algunas comparaciones, en relación con el uso de recursos lógicos y la preci-
sión, sugieren que nuestro trabajo supera a trabajos previos.

Palabras clave: CNN; FPGA; acelerador en hardware; MNIST, Zynq

109A Hardware Accelerator for The Inference of a Convolutional Neural Network

Revista Ciencia e Ingeniería Neogranadina ■ Vol. 30(1)

1 Introduction
Image classification has been widely used in many
areas of the industry. Convolutional neural net-
works (CNNs) have achieved high accuracy and
robustness for image classification (e.g. Lenet-5 [1],
GoogLenet [2]). CNNs have numerous potential
applications in object recognition [3, 4], face detec-
tion [5], and medical applications [6], among oth-
ers. In contrast, modern models of CNNs demand
a high computational cost and large memory
resources. This high demand is due to the multiple
arithmetic operations to be solved and the huge
amount of parameters to be saved. Thus, large
computing systems and high energy dissipation
are required.

Therefore, several hardware accelerators have
been proposed in recent years to achieve low
power usage and high performance [7-10]. In [11]
an FPGA-based accelerator is proposed, which
is implemented in Xilinx Zynq-7020 FPGA. They
implement three different architectures: 32-bit
floating, 20-bits fixed point format and a binarized
(one bit) version, which achieved an accuracy of
96.33 %, 94.67 %, and 88 %, respectively. In [12] an
automated design methodology was proposed to
perform a different subset of CNN convolutional
layers into multiple processors by partitioning
available FPGA resources. Results achieved a 3.8x,
2.2x and 2.0x higher throughput than previous
works in AlexNet, SqueezeNet, GoogLenet, respec-
tively. In [13] a CNN for a low-power embedded
system was proposed. Results achieved 2x energy
efficiency compared with GPU implementation. In
[14] some methods are proposed to optimize CNNs
regarding energy efficiency and high through-
put. In this work, an FPGA-based CNN for Lenet-5
was implemented on the Zynq-7000 platform. It
achieved a 37 % higher throughput and 93.7 % less
energy dissipation than GPU implementation, and
the same error rate of 0.99 % in software imple-
mentation. In [15] a six-layer accelerator is imple-
mented for MNIST digit recognition, which uses 25
bits and achieves an accuracy of 98.62 %. In [16] a
5-layer accelerator is implemented for MNIST digit
recognition, which uses 11 bits and achieves an
accuracy of 96.8 %.

It is important to note that most of the works
mentioned above have used High-Level Syn-
thesis (HLS) software. This tool allows creating a
software accelerator directly, without the need to
manually create a Register Transfer Level (RTL).
However, HLS software generally causes higher
hardware resource utilization, which explains why
our implementation required less logical resources
than previous works.

In this work, we implemented an RTL architec-
ture for Lenet-5 inference, which was described by
using directly Hardware Description Language
(HDL) (eg. Verilog). It aims to achieve low hard-
ware resource utilization and high throughput.
We have designed a Software/Hardware (SW/HW)
co-processing to reduce hardware resources. The
work established the number of bits in a fixed-
point representation that achieves the best ratio
between accuracy/number of bits. The implemen-
tation was done using 12-bits fixed-point on the
Zynq platform. Our results show that there is not a
significant decrease in accuracy besides low hard-
ware resource usage.

This paper is organized as follows: Section 2
describes CNNs; Section 3 explains the proposed
scheme; Section 4 presents details of the implemen-
tation and the results of our work; Section 5 dis-
cusses results and some ideas for further research;
And finally, Section 6 concludes this paper.

2 Convolutional neural networks
CNNs allow the extraction of features from input
data to classify them into a set of pre-established
categories. To classify data CNNs should be trained.
The training process aims at fitting the parameters
to classify data with the desired accuracy. During
the training process, many input data are pre-
sented to the CNN with the respective labels. Then
a gradient-based learning algorithm is executed to
minimize a loss function by updating CNN param-
eters (weights and biases) [1]. The loss function
evaluates the inconsistency between the predicted
label and the current label.

A CNN consists of a series of layers that run
sequentially. The output of a specific layer is the
input of the subsequent layer. The CNN typically

110 ■ E. González ■ W. D. Villamizar Luna ■ C. A. Fajardo Ariza

Revista Ciencia e Ingeniería Neogranadina ■ Vol. 30(1)

uses three types of layers: convolutional, sub-sam-
pling and fully connected layers. Convolutional
layers extract features from the input image.
Sub-sampling layers reduce both spatial size and
computational complexity. Finally, fully connected
layers classify data.

2.1 Lenet-5 architecture
The Lenet-5 architecture [2] includes seven layers
(Figure 1): three convolutional layers (C1, C3, and
C5), two sub-sampling layers, (S2 and S4) and two
fully connected layers (F6 and OUTPUT).

In our implementation, the size of the input
image is 28×28 pixels. Table 1 shows the dimen-
sions of inputs, feature maps, weights, and biases
for each layer.

Convolutional layers consist of kernels (matrix
of weights), biases and an activation function (eg.

Rectifier Linear Unit (ReLu), Sigmoid). The con-
volutional layer takes the feature maps in the pre-
vious layer with depth and convolves them with
kernels of the same depth. Then, the bias is added
to the convolution output and this result passes
through an activation function, in this case, ReLu
[17]. Kernels shift into the input with a stride of one
to obtain an output feature map. Convolutional
layers have feature maps of n-k+1×n-k+1 pixels.

Note that weights and bias parameters are
not found in the S2 and S4 layers. The output of a
sub-sampling layer is obtained by taking the max-
imum value from a batch of the feature map in the
preceding layer. A fully connected layer has fea-
ture maps. Each feature map results from the dot
product between the input vector of the layer and
the weight vector. The input and weight vectors
have elements.

Table 1. Dimensions of CNN layers

Layer
Size

Input n×n×p Weight k×k×p×d Bias d Feature Map m×m×d

C1 28×28×1 5×5×1×6 6 24×24×6

S2 24×24×6 N/A N/A 12×12×6

C3 12×12×6 5×5×6×16 16 8×8×16

S4 8×8×16 N/A NA 4×4×16

C5 4×4×16 4×4×16×120 120 1×1×120

F6 1×1×120 1×1×120×84 84 1×1×84

Output 1×1×84 1×1×84×10 10 1×1×10

Source: The authors.

Fig. 1. Lenet-5 architecture.
Source: Adapted from [1].

INPUT
28x28

OUTPUT
10

F6:F. maps
84

C5:F. maps
120

S4:F. maps
4x4x16

C3:F. maps
8x8x16

S2:F. maps
12x12x6

C1:Feature maps
21x21x6

Convolutions Subsampling ConvolutionsConvolutions Subsampling
Full

Connection

Full
Connection

111A Hardware Accelerator for The Inference of a Convolutional Neural Network

Revista Ciencia e Ingeniería Neogranadina ■ Vol. 30(1)

3 Software/hardware co-
processing scheme
Fig. 2 presents the proposed SW/HW co-process-
ing scheme to perform the Lenet-5 inference on
Zynq-7000 SoC. It consists of two main parts: an
Advanced RISC Machine (ARM) processor and
an FPGA, which are connected by the Advanced
eXtensible Interface 4 (AXI4) bus [18]. A C applica-
tion runs into the ARM processor, which is respon-
sible for the data transfer between software and
hardware. Furthermore, a hardware accelerator is
implemented on the FPGA. This accelerator con-
sists of a custom computational architecture that
performs the CNN inference process.

3.1 Hardware accelerator
Fig. 3 shows the hardware accelerator that devel-
ops the inference process of CNN. The FSM con-
trols the hardware resources into the accelerator.
REGISTER_BANK contains the dimensions of the
entire architecture (Table 1). MEMORY_SYSTEM
consists of four Block RAMs (BRAMs). The first one
stores weights, and the second one stores biases.
RAM_3 and RAM_4 store the intermediate values
of the process. These memories are overwritten in
each layer. All four memories are addressed by the
ADDRESS_RAM module.

MATH_ENGINE is the mainstream module in
our design because it performs all the necessary
arithmetic operations in the three types of layers
mentioned in Section 2. All feature maps of the
layers are calculated by reusing this module. It
is necessary to highlight the saving of hardware
resources with the implementation of this module.

This module is used to:
 ◾ Perform a convolution process in a parallel

fashion

 ◾ Calculate a dot product between vectors

 ◾ Add bias

 ◾ Evaluate the ReLu activation function

 ◾ Perform the sub-sampling process

AX
I4

-Li
te

Interrupt

HARDWARE
ACCELERATOR

RAM
4

RAM
3

RAM
2

RAM
1

MATH
ENGINE

CONTROL
(FSM)

REGISTER
BANK

ADDRESS
RAM

MEMORY SYSTEM

Fig. 3. Hardware accelerator scheme.
Source: The authors.

FPGA

ARM
Processor

AMBA AXI4
Interface

Interruption

Hardware
Accelerator

Zynq-7000

Fig. 2. General software/hardware co-processing
scheme.
Source: The authors.

112 ■ E. González ■ W. D. Villamizar Luna ■ C. A. Fajardo Ariza

Revista Ciencia e Ingeniería Neogranadina ■ Vol. 30(1)

To perform all the processes mentioned
above, the module MATH_ENGINE is composed of
CONV_DOT, BIAS_&_ReLu, and SUB_SAMPLING.
The overall architecture of the MATH_ENGINE is
shown in Fig. 4.

CONV_DOT consists of six blocks. Each block
performs either a 5×5 convolution or a dot product
between vectors with a length of 25. The BIAS_&_
ReLu submodule adds a bias to the output of the
CONV_DOT submodule and performs the ReLU
function. The SUB_SAMPLING submodule per-
forms a max-pooling process (layers S2 and S4).

3.2 Description of the SW/HW
scheme process
Before the accelerator classifies an image, it is nec-
essary to store all the required parameters (weights,
biases, and dimensions of CNN layers). The proces-
sor sends the input image and the parameters to
the MEMORY_SYSTEM and the BANK_REGISTER,
respectively. Initially, RAM3 stores the image.
Then, the processor sets the start signal of FSM,
which initiates the inference process. The FSM
configures MATH_ENGINE, ADDRESS_RAM, and
MEMORY_SYSTEM according to the data in the
BANK_REGISTER.

As mentioned, for convolutional and fully
connected layers, the CONV_DOT submodule per-
forms the convolution and dot product operations,
respectively. The Bias_&_ReLu submodule adds
the bias and performs the ReLu activation func-
tion. Moreover, for subsampling layers, the input
is passed through the SUB_SAMPLING submodule.

According to the current layer, the MATH_ENGINE
output could be either the result of Bias_&_ReLu
or SUB_SAMPLING.

To reduce the amount of memory required,
we implemented a re-use memory strategy. The
strategy is based on the use of just two memories,
which are switched to store the input and output of
each layer. For example, in Layer_i input is taken
from RAM3 and output is stored into RAM4. Then,
in Layer_(i+1) input is taken from RAM4 and out-
put is stored into RAM3 and so on.

Lenet-5 has ten outputs, one for each digit.
Image classification is the digit represented by the
output that has the maximum value. The inference
process is carried out by executing all the layers.
Once this process is finished, the FSM sends an
interruption to the ARM processor, which enables
the transfer of the result from the hardware accel-
erator to the processor.

4 Results
This section describes the performance of the SW/
HW co-processing scheme implementation. The
implementation was carried out into a Digilent
Arty Z7-20 development board using two comple-
ment fixed-points. This board is designed around
the Zynq-7000 SoC with 512 MB DDR3 memory.
The SoC integrates a dual-core ARM Cortex-A9
processor with Xilinx Artix-7 FPGA. The ARM pro-
cessor runs at 650 MHz and the FPGA is clocked at
100 MHz. The project was synthesized using Xilinx
Vivado Design Suite 2018.4 software.

Fig. 4. Math engine.
Source: The authors.

MATH ENGINE

MEMORY SYSTEMMEMORY SYSTEM

FSM

SUB-SAMPLING

CONV

DOT

BIAS
&

ReLu

113A Hardware Accelerator for The Inference of a Convolutional Neural Network

Revista Ciencia e Ingeniería Neogranadina ■ Vol. 30(1)

4.1 CNN training and validation
CNN was trained and validated on a set of hand-
written digits images from the MNIST database [1].
The MNIST database contains handwritten dig-
its from 0 to 9. The digits are centered on a 28 x
28-pixel grayscale image. Each pixel is represented
by 8 bits, obtaining values in a range from 0 to
255, where 0 means white background, and 255
means black foreground. The MNIST database has
a training set of 60,000 images and a validation
set of 10m000 images. API Keras with TensorFlow
backend was used to train and validate the CNN in
python. Python was set up to use a floating-point
representation to achieve high precision.

Furthermore, the inference process was iter-
ated eight times on the proposed scheme by
changing word length and fractional length. CNN
parameters and the validation set were quantized
in second’s complement fixed-point format using
MATLAB. Table 2 shows the percent of accuracy
obtained by each validation.

Table 2. Accuracy for different data representations

Word Length
[bits]

Integer,
Fraction Accuracy %

Floating Point 32 N/A 98.85

Fixed Point

17 «7,10» 98.85

15 6,9 98.70

16 8,8 98.70

15 7,8 98.70

14 6,8 98.68

12 6,6 97.59

11 6,5 91.46

16 5,11 61.31

Source: The authors.

The W, F notation indicates integer length (W)
and fractional length (F). A starting point was set
by finding the number of bits that represents the
maximum value in the integer part.

4.2 Execution time
The number of clock cycles spent in data transfer
between software and hardware is counted by a
global timer. A counter was implemented on the
FPGA, which counts the number of clock cycles
required by the hardware accelerator to perform
the inference process. Table 3 shows the execution
time of the implementation.

Table 3. Execution times per image

Process Time [ms]

Load parameters 7.559*

Load image input 0.122

Inference process 2.143

Extract output data 0.002

Total Time 2.268

Source: The authors.

The parameters are sent to the hardware only
once when the accelerator is configured by the pro-
cessor. Therefore, the time to upload the param-
eters* was not considered in the total execution
time.

The execution time per image is 2,268 ms.
Thus, our implementation achieves a throughput
of 440,917 images per second.

4.3 Hardware resource utilization
Table 4 shows hardware resource utilization for
different word lengths. As the MATH ENGINE per-
forms 150 multiplications in parallel, the amount
of Digital Signal Processors (DSPs) used in all cases
is constant. In this case, 150 DSPs in the MATH
ENGINE and 3 DSPs are used in the rest of the
design.

Note that a shorter word length reduces hard-
ware resources. However, it is important to con-
sider how accuracy will be affected by the integer
and fractional lengths (Table 2).

114 ■ E. González ■ W. D. Villamizar Luna ■ C. A. Fajardo Ariza

Revista Ciencia e Ingeniería Neogranadina ■ Vol. 30(1)

4.4 Power estimation
The power estimation for the proposed scheme
was made by using Xilinx Vivado software (Fig. 5).
This estimation only reports the consumption of
Zynq-7000 SoC (a DDR3 RAM is considered part of
the ARM processor).

The FPGA consumes power in the software
implementation due to the architecture of the
Zynq-7000 platform. Note that the ARM processor
consumes most of the total power even when the
hardware accelerator performs the inference pro-
cess, which takes most of the execution time.

on the Zynq-7000 platform: software-only and
hardware-only solutions. In the software-only
solution, the input image and CNN parameters are
taken to the DDR3 RAM. The hardware-only solu-
tion uses a serial communication (Universal Asyn-
chronous Receiver-Transmitter (UART)) module to
replace the ARM processor in the co-processing
scheme.

Table 5 shows the results of the three implemen-
tations on the Arty Z7 board. Although the pro-
posed scheme implementation uses less than twice
the word length of the software-only solution, the
accuracy only fell by 1.27 %. Also, our co-process-
ing scheme achieved the highest throughput. The
hardware-only implementation is a low power ver-
sion of the proposed scheme. Future research will
focus on improving the performance of the hard-
ware-only solution. Note that the hardware-only
implementation has the lowest throughput because
of the bottleneck imposed by the UART (to trans-
fer the input image, CNN parameters are stored in
BRAMs). However, this implementation could be
the best option for applications in which power
consumption is critical and not throughput.

As mentioned, it is difficult to compare our
results against other FPGA-based implementations
because they are not exactly like ours. However,
some comparisons can be made regarding the use
of logical resources and accuracy. Table 6 presents
a comparison with some predecessors.

Table 4. Comparison of hardware resource utilization for different word lengths

Precision Word Length
[bits]

Hardware resources Max.
accuracy %LUTs FFs BRAM [KB]

Fixed point

17 4738 2922 173.25 98.85

16 4634 2892 164.25 98.70

15 4549 2862 155.25 98.70

14 4443 2832 146.25 98.68

12 4254 2772 119.25 97.59

11 4151 2742 114.75 91.46

Source: The authors.

Fig. 5. Power estimation for the proposed scheme.
Source: The authors.

5 Discussion
We compared the implementation of our co-pro-
cessing scheme with two different implementations

Sw/Hw scheme

Power:

27%

73%

1.719W

ARM
Processor

FPGA

115A Hardware Accelerator for The Inference of a Convolutional Neural Network

Revista Ciencia e Ingeniería Neogranadina ■ Vol. 30(1)

6 Conclusion
In this paper, an SW/HW co-processing scheme for
Lenet-5 inference was proposed and implemented
on a Digilent Arty Z7-20 board. Results show an
accuracy of 97.59 % using a 12-bit fixed-point for-
mat. The implementation of the proposed scheme
achieved a higher throughput than a software
implementation on the Zynq-7000 platform. Our
results suggest that the usage of a fixed-point data
format allows the reduction of hardware resources
without compromising accuracy. Furthermore, the
co-processing scheme makes it possible to improve
the inference processing time. This encourages
future advances in energy efficiency on embedded
devices for deep learning applications.

References
[1] Y. LeCun et al., “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998. https://doi.
org/10.1109/5.726791

[2] C. Szegedy et al., “Going deeper with convolutions,” in
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2015. pp. 1-9. https://
doi.org/10.1109/CVPR.2015.7298594

[3] A. Dundar, J. Jin, B. Martini, and E. Culurciello, “Embed-
ded streaming deep neural networks accelerator with
applications,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 28, no. 7, pp. 1572-1583, July
2017. https://doi.org/10.1109/TNNLS.2016.2545298

[4] B. Ahn, “Real-time video object recognition using con-
volutional neural network,” in 2015 International Joint

Table 5. Power estimation for different implementations

Co-processing scheme Hardware-only Software-only

Data format 12-bit fixed-point 12-bit fixed-point 32-bit floating-point

Frequency (MHz) 100 100 650

Accuracy (%) 97.59 97.59 98.85

Throughput (images/second) 441 7 365

Power estimated (W) 1.719 0.123 1.403

Source: The authors.

Table 6. Comparison with some predecessors

Metric Our Design [11] [17] [18]

Model
3 Conv

2 Pooling
2 FC

2 Conv
2 Pooling

1 FC

2 Conv
2 Pooling

2 FC

2 Conv
2 Pooling

Fixed Point 12 bits 20 bits 25 bits 11 bits

Operation Frequency 100 MHz 100 MHz 100 MHz 150 MHz

BRAM 45 3 27 0

DSP48E 158 9 20 83

FF 2 772 40 534 54 075 40 140

LUT 4 254 38 899 14 832 80 175

Accuracy 97.59 % 94.67% 98.62 % 96.8 %

Source: The authors.

Note that our design uses less Look-Up Tables (LUTs) and Flip-Flops (FFs) than these previous works. Only [15] achieves better accuracy
because this implementation uses more bits; however, this number of bits increases the number of logical resources.

116 ■ E. González ■ W. D. Villamizar Luna ■ C. A. Fajardo Ariza

Revista Ciencia e Ingeniería Neogranadina ■ Vol. 30(1)

Conference on Neural Networks (IJCNN), July 2015,
pp. 1-7. https://doi.org/10.1109/IJCNN.2015.7280718

[5] B. Yu, Y. Tsao, S. Yang, Y. Chen, and S. Chien, “Archi-
tecture design of convolutional neural networks for
face detection on an fpga platform,” in 2018 IEEE In-
ternational Workshop on Signal Processing Systems
(SiPS), Oct. 2018, pp. 88-93. https://doi.org/10.1109/
SiPS.2018.8598428

[6] Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ecg signal
classification for detection of atrial fibrillation using a
novel neural network,” in 2017 Computing in Cardiol-
ogy (CinC), Sep. 2017, pp. 1-4. https://doi.org/10.22489/
CinC.2017.066-138

[7] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han,
Y. Wang, and H. Yang, “Angel-eye: A complete design
flow for mapping cnn onto embedded fpga,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 1, pp. 35-47, Jan 2018.
https://doi.org/10.1109/TCAD.2017.2705069

[8] N. Suda et al., “Throughput-optimized opencl-based
fpga accelerator for large-scale convolutional neural
networks,” in Proceedings of the 2016 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate
Arrays, ser. FPGA ‘16. New York, NY, USA: ACM, 2016,
pp. 16-25. http://doi.acm.org/10.1145/2847263.2847276

[9] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing fpga-based accelerator design for deep
convolutional neural networks,” in Proceedings of
the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ‘15. New
York, NY, USA: ACM, 2015, pp. 161-170. https://doi.
org/10.1145/2684746.2689060

[10] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K.
Strauss, and E. S. Chung, “Accelerating deep convo-
lutional neural networks using specialized hardware,”
Microsoft Research Whitepaper, vol. 2, no. 11, pp. 1-4,
2015.

[11] T. Tsai, Y. Ho, and M. Sheu, “Implementation of fp-
ga-based accelerator for deep neural networks,”
in 2019 IEEE 22nd International Symposium on

Design and Diagnostics of Electronic Circuits Systems
(DDECS), April 2019, pp. 1-4. https://doi.org/10.1109/
DDECS.2019.8724665

[12] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn
accelerator efficiency through resource partitioning,”
in 2017 ACM/IEEE 44th Annual International Sym-
posium on Computer Architecture (ISCA), June 2017,
pp. 535-547. https://doi.org/10.1145/3140659.3080221

[13] Y. Wang et al., “Low power convolutional neural net-
works on a chip,” in 2016 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), May 2016pp.
129-132,. https://doi.org/10.1109/ISCAS.2016.7527187

[14] G. Feng, Z. Hu, S. Chen, and F. Wu, “Energy-efficient
and high-throughput fpga-based accelerator for con-
volutional neural networks,” in 2016 13th IEEE In-
ternational Conference on Solid-State and Integrated
Circuit Technology (ICSICT), Oct. 2016, pp. 624-626.
https://doi.org/10.1109/ICSICT.2016.7998996

[15] S. Ghaffari and S. Sharifian, “FPGA-based convolu-
tional neural network accelerator design using high
level synthesize,” in Proceedings - 2016 2nd Interna-
tional Conference of Signal Processing and Intelli-
gent Systems, ICSPIS 2016, 2016, pp. 1-6. https://doi.
org/10.1109/ICSPIS.2016.7869873

[16] Y. Zhou and J. Jiang, “An FPGA-based accelerator im-
plementation for deep convolutional neural networks,”
in Proceedings of 2015 4th International Confer-
ence on Computer Science and Network Technology,
ICCSNT 2015, 2015, vol. 01, no. Iccsnt, pp. 829-832.
https://doi.org/10.1109/ICCSNT.2015.7490869

[17] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted Boltzman machines,” in Proceedings
of the 27th International Conference on International
Conference on Machine Learning, ser. ICML’10. USA:
Omnipress, 2010, pp. 807-814. [Online]. http://dl.acm.
org/citation.cfm?id=3104322.3104425

[18] Xilinx. Axi reference guide. [Online]. Available:
https://www.xilinx.com/support/documentation/ip_
documentation/axi_ref_guide/latest/ug1037-vivado-
axi-reference-guide.pdf

https://doi.org/10.1109/ICCSNT.2015.7490869

	_Ref11357069
	_Ref11357062
	_Ref11357688
	_GoBack

