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Assessment of Image-Texture Improvement 
Applied to Unmanned Aerial Vehicle 
Imagery for the Identification of 
Biotic Stress in Espeletia. Case Study: 
Moorlands of Chingaza (Colombia)
Laura Martína ■ Javier Medinab ■ Erika Upeguic 

Abstract: Espeletia is one of the most representative endemic species of moorland ecosystems and 
is currently being affected by biotic stress. Meanwhile, the analysis of images obtained by means of 
unmanned aerial vehicle imagery has proved its usefulness in environmental monitoring activities. 
This work is aimed at establishing whether image-texture analysis applied to unmanned aerial vehicle 
imagery from Moorlands of Chingaza (Colombia) allows the identification of biotic stress in Espeletia. 
To this end, this study makes use of occurrence analysis, gray-level co-occurrence matrix, and Fourier 
transform. Identification of healthy/unhealthy Espeletia is conducted using maximum likelihood tests 
and support vector machines. The results are assessed based on overall accuracy, the kappa coeffi-
cient and Bhattacharyya distance. By combining spectral and image-texture information, it is shown 
that classification accuracy increases, reaching kappa coefficient values of 0.9824 and overall accu-
racy values of 99.51%.
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ments; unmanned aerial vehicles.
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Evaluación del aporte de las características texturales en 
imágenes adquiridas en vehículos aéreos no tripulados  
para la identificación del estrés biótico en frailejones.  
Caso de estudio: páramo de Chingaza (Colombia)

Resumen: los frailejones son una de las especies endémicas más representativas en los ecosistemas 
de páramo, la cual, en los últimos años, se está viendo afectada por el estrés biótico. Las imágenes 
obtenidas mediante vehículos aéreos no tripulados han demostrado un gran potencial en el monito-
reo ambiental. Este trabajo busca establecer si el análisis textural aplicado a estas imágenes adquiri-
das en el Páramo de Chingaza (Colombia) permite la identificación del estrés biótico en los frailejones. 
Con este fin, en este estudio se hace uso del análisis de ocurrencia, la matriz de coincidencia de nivel 
de gris y la transformada de Fourier. La identificación de frailejón sano y enfermo se realiza a través 
de la clasificación de máxima verosimilitud y de máquinas de soporte vectorial. Los resultados son 
evaluados a través de la precisión global, el coeficiente kappa y la distancia bhattacharyya; mostran-
do que la combinación de información espectral y textural aumentan la exactitud de clasificación 
alcanzado un coeficiente kappa de 0.9824 y una precisión global de 99.51%.

Palabras clave: estrés biótico; frailejones; medidas texturales; máquinas de soporte vectorial; 
máxima verosimilitud; vehículos aéreos no tripulados



29
Assessment of Image-Texture Improvement Applied to Unmanned Aerial Vehicle Imagery for  
the Identification of Biotic Stress in Espeletia. Case Study: Moorlands of Chingaza (Colombia)

Revista Ciencia e Ingeniería Neogranadina  ■  Vol. 30(1) 

Introduction
According to FAO [1], moorlands are fragile eco-
systems of global significance because they host 
rich biodiversity and, most importantly, because 
they are sources of fresh water. Espeletia (Espe-
letia sp.) is one of the most representative species 
of moorland vegetation and is of great ecological 
value for the local ecosystem and for the water 
cycle [2]. In recent years, populations of Espeletia 
have been affected by climate change [3], allowing 
phytopathogen organisms to cause biotic stress in 
this species. Biotic stress is caused by the presence 
of microorganisms that affect the vegetable and 
reproductive structures of the host plant, lead-
ing to significant losses in terms of population. 
A reduction in the population of Espeletia is cer-
tainly undesirable since it is an essential type of 
vegetation in the moorland ecosystem [4].

As for the stress, the images have been used for 
its identification, as in the work of Susi č, et al. [5] 
and Žibrat et al. [6]: where support vector machine 
classification, biotic and abiotic drought stress in 
tomato plants can be differentiated by combining 
hyperspectral imaging and partial least squares.

The use of unmanned aerial vehicles (UAV) has 
become more frequent in recent years due to their 
multiple applications in fields such as cartography, 
photogrammetry, topography, precision agricul-
ture and environmental monitoring, among others 
[7], [8]. Specifically, in the fields of precision agri-
culture and environmental monitoring, UAV have 
become commonplace since they allow images to 
be taken on a very frequent basis, which permits 
the identification of areas, either over fields or 
native vegetation, that require pest or weed control 
or any other type of intervention [9].

Regarding image processing, texture measure-
ments have appeared in the literature since 1979, 
when the work of Haralick described texture as an 
important feature for the identification of objects 
or regions of interest in different types of images 
[10]. Based on the implementation of UAV plat-
forms for remote sensing, a variety of applications 
are expected to make use of existing processing 
techniques, such as texture analysis [11]-[13]. Tex-
ture features have been used to process images 

captured by UAV platforms for different purposes. 
For example, in Laliberte and Rango [11] a study 
about herb identification in New Mexico, 10 types 
of texture identification measurements were used 
based on gray-level co-occurrence matrix statis-
tics (GLCM) as well as gray-level difference vector 
statistics (GLDV). It was concluded that the incor-
poration of texture measurements significantly 
increases classification accuracy [11]. Likewise, to 
identify weed within fields of corn, beans and egg-
plants, texture analysis allowed a 17% increase in 
classification accuracy [9]. Even more, Feng et al. 
[13] used UAV images for urban vegetation map-
ping using random forest and texture analysis. Six 
least correlated GLCM texture features were cal-
culated with nine different moving windows cho-
sen in this study (3x3, 5x5, 7x7, 9x9, 11x11, 15x15, 
21x21, 31x31 and 51x51). Results showed that over-
all accuracy increased from 73.5% to 90.6% and 
76.6% to 86.2% after the inclusion of texture fea-
tures, which indicated that texture plays a signifi-
cant role in improving classification accuracy. Also, 
texture analysis has allowed the identification of 
hydric stress in Sunagoke moss [14] based on spec-
tral analysis and GLCM texture features. Similarly, 
Hashim [15], [28] investigated the application of a 
backscattering imaging system (BIS) with differ-
ent approaches of transform-based image texture 
analysis for the evaluation of banana quality at 
different ripening stages with Wavelet, Gabor and 
Tamura transforms. This study indicated that a BIS 
with transform-based image texture analysis cou-
pled with computational intelligence techniques 
can be used for the evaluation of the quality of 
bananas. In the same way, Ferreira et al. [16] con-
cluded that texture analysis of the panchromatic 
band enabled the detection of species-specific dif-
ferences in crown structure, which improved tree 
species detection in tropical forests using World-
View-3 images. Equally, the results [17] showed 
that combining the textural and spectral informa-
tion during modelling resulted in improved classi-
fication of the sixteen green tea products compared 
to models built using spectral or textural informa-
tion alone. More recently, in 2019, Yue et al. [12] 
estimated winter-wheat above-ground biomass 
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(AGB) based on UAV ultra-high ground-resolution 
image textures and vegetation indices. They used 
eight gray-tone spatial-dependence matrix-based 
image textures to evaluate their correlation with 
AGB. These eight textures were typically based on 
the gray-tone spatial-dependence matrix defined 
by the Haralick. When calculating image textures, 
they have chosen three calculation windows: 3×3, 
5×5, and 9×9. As a result, they concluded that the 
combined use of image textures and original vis-
ible images can help improve estimates of AGB 
under conditions of high canopy coverage.

This work focuses on texture analysis for 
images captured using UAV technology to identify 
the biotic stress of moorland Espeletia. Six differ-
ent texture measurements from two main catego-
ries of texture analysis –statistical (first and second 
order) and model-transform approaches– are con-
sidered in this research work to compare their per-
formance on the problem of differentiation of the 
biotic stress in Espeletia. Then, two different clas-
sifiers are applied, parametric and non-parametric 
approaches, to extract unhealthy Espeletia plants.

The paper is organized as follows. Some basic 
concepts are reviewed in Section 1. The general 
context that justifies the proposed method is pre-
sented in Section 2. The results obtained and its 
discussion are given in Section 3. Finally, conclu-
sions are drawn in Section 4.

1. Basic concepts

1.1 Biotic stress
Stress is an external factor that negatively affects 
an organism or forces it to change the physiology 
of the plant. The factors that produce stress can be 
classified as abiotic stress or biotic stress [20].

Abiotic stress can be classified as physical 
and chemical, depending on the causative factor. 
Physical factors include stress due to water deficit 
or excess, extreme temperatures (heat, freezing), 
salinity and UV radiation; and chemical factors 
such as air pollution by heavy metals, toxins, salin-
ity and lack of minerals [20], [21].

Biotic stress is caused by the action of other 
living beings such as microorganisms, bacteria, 
fungi, viruses and nematodes; by other plants 
(competition) and animals such as insects, large 
and small invertebrates [20], [21]. 

1.2 Texture analysis
Although texture is a characteristic that can be 
easily recognized in images, various definitions 
have been accepted in the literature [10], [22]-[24]. 

 ◾ “The image texture we consider is nonfigurative 
and cellular. An image texture is described by the 
number and types of its (tonal) primitives and the 
spatial organization or layout of its (tonal) primi-
tives. A fundamental characteristic of texture: it 
cannot be analyzed without a frame of referen-
ce of tonal primitive being stated or implied. For 
any smooth gray-tone surface, there exists a scale 
such that when the surface is examined, it has no 
texture. Then as resolution increases, it takes on a 
fine texture and then a coarse texture.” [10].

 ◾ “A region in an image has a constant texture if a 
set of local statistics or other local properties of 
the picture function are constant, slowly varying, 
or approximately periodic.” [23].

 ◾ “Image texture is defined as a function of the spa-
tial variation in pixel intensities (gray values)” 
[22].

 ◾ “Texture is a visual pattern attribute. It consists of 
subpatterns, which are related to the pixel distri-
bution in a region and characteristics of the ima-
ge object, such as size, brightness and color. Even 
though, there is no exact definition for the term 
texture, this is an attribute easily comprehended 
by humans and responsible for extracting mea-
ningful information from images” [24].

However, different definitions agree on stating 
that texture is a pattern of spatial variation that 
can be described statistically or in terms of the 
local properties of images. The various applicable 
techniques for texture analysis can be classified 
according to their processing methods [22] as fol-
lows: a) statistical; b) geometric; c) model-based; 
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and d) signal-processing-based. Furthermore, as 
in the definitions of texture, there is a variety of 
proposals to classify the processing methods.

2. Materials and methods

2.1 Study area
The study area lies in the moorlands of Chin-
gaza [2], located in the eastern mountain range 
of Colombian Andes, from 3.100m to 4.700m 
a.s.l., towards the north-east of Bogotá D.C. Chin-
gaza is considered as one of the most important 
moorlands because it provides about 80% of the 
municipal drinking water to the capital of Colom-
bia, (Bogotá D.C.) [18]. The area of interest, which 
extends for half a hectare, was covered by cap-
turing images using a UAV TAROT 680 PRO (with 
GPS and INS included). A total of 167 photos were 
acquired. Five ground control points were pre-sig-
nalized (4 located in the corners of the study area 
and the last at the Center) and positioned with a 
receiver GNSS Gr-5, in order to adjust the block 
of images. The UAV overflew the area 20 meters 
above ground level and was equipped with two 
Canon A2300 digital cameras. The first camera 
captured in the visible spectrum (400-700 nm) 
obtaining true color images (i.e. Red-Green-Blue 
– RGB combination), whereas the second camera 
was modified to capture in the infrared spectrum 
acquiring standard false color images (i.e. Near-
Infrared-Red-Green – NIR combination). The data 

set was acquired in August 2016, with a Ground 
Sample Distance (GSD) of approximately 2 cm. The 
block adjustment of the images was processed with 
Pix4D ® software. Figure 1 illustrates a sample of 
healthy and unhealthy Espeletia plants using both 
RGB and NIR. In 2017, Sastoque et al. [19] showed 
that differentiation of the biotic stress in Espe-
letia is evident in the spectral response captured 
in images acquired at different ranges of the elec-
tromagnetic spectrum, including the visible (true 
color images fig. 1a and 1c) and infrared (false 
color images fig. 1b and 1d).

On the other hand, texture analysis, specifi-
cally first order statistics and GLCM was performed 
in the ENVI® 5.3. software; while FT was done with 
PCI Geomatics® 2017 software. An Intel Core i7 
processor with 6 GB RAM memory and operating 
system Windows 10 (64-bits) was used as com-
puter system.

2.2 Proposed method
The complete process consists of four stages from 
the acquired images (RGB and NIR). Workflow is 
shown in figure 2. First stage is responsible for cal-
culating the texture measures. In the second stage, 
characteristic vectors are generated from original 
images together with texture measurements. Third 
stage classifies the characteristic vectors to iden-
tify biotic stress of moorland Espeletia. Last stage 
assesses the classification of phytosanitary status 
of Espeletia plants.

(a) (b) (c) (d)

Fig. 1. Healthy Espeletia plant vs. unhealthy plant. (a) Unhealthy plant in RGB. (b) Unhealthy plant in NIR. (c) Healthy 
plant in RGB. (d) Healthy plant in NIR.
Source: Author
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2.2.1. Texture analysis
The literature review shows that the mean (MEA) 
and the variance (VAR) are the most appropriate 
first order statistics to describe the texture [12], 
[13], [16] and [32]. Likewise, in the Gray-Level Co-
occurrence Matrix (GLCM), the contrast (CON), the 
entropy (ENT) and the correlation (COR) [9] - [11], 
[14], [16] and [32] are the measures that signifi-
cantly improve the classification accuracy. Regard-
ing the digital transformations, Fourier transform 
[24], [25] –including its special cases such as Gabor 
Transform [15], [24]– is one of the most commonly 
used methods for textural analysis. Therefore, 
based on the multispectral images, both RGB and 
NIR, texture measurements are applied, namely, 
MEA, VAR, ENT, CON, 0, and FT. The window sizes 
selected here were 5×5, 11×11 and 15×15. 

2.2.2. Characteristic vector
Once the textures features are created from the 
application of texture measurements, character-
istic vectors are obtained for classification as fol-
lows: each original image (RGB and NIR) paired 
with each texture measurement (MEA, VAR, ENT, 
CON, COR, and FT), and evaluated for each of the 

window sizes (5x5, 11x11 and 15x15) [13], yields a 
total of 46 combinations. It is important to men-
tion that, for the case of RGB original images, spe-
cial attention is given to the Green band [9], [13]; 
and for the case of NIR original images, the empha-
sis was placed on the infrared band [9]. In case the 
three bands of the texture have been used, this is 
expressed in the vector of characteristics with the 
nomenclature RGB_3 or NIR_3.

2.2.3. Image Classification
The choice of SVM as a classifier was due to the fact 
that it is considered a state-of-the-art automatic 
learning method and is increasingly used [5], [6], 
[12], [15]-[17]. Besides, SVM classification showed 
that it is possible to differentiate between biotic and 
abiotic drought stress in tomato plants [5]. Regard-
ing ML classification is one of the most common 
methods [30]. Thus, the previous combinations 
are used to create the characteristic vectors that 
become the training set for both the ML and SVM 
classifiers. Thirty samples (fig. 3) were selected as 
part of the training set to create the characteris-
tic vector that allows identification of the healthy/
unhealthy Espeletia plants as well as the areas 

Texture Analysis

Characteristic vector

Image Classification

Original images

Classification Assessment

RGB Image NIR Image

Kappa coefficient Bhattacharyya distanceOverall accuracy

Maximum Likelihood Support Vector Machine

RGB + Texture measurement (Green band) NIR + Texture measurement (IR band)RGB or NIR + 3 texture measurements

Ocurrence analysis Fourier transformGray-Level Co-occurrence Matrix

Fig. 2. Workflow.
Source: Author
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with other types of vegetation [33]. The recogni-
tion of the phytosanitary status of Espeletia (both 
in the field and in the images) was identified in the 
guided tour carried out by the forest rangers of the 
moorlands of Chingaza at the time of the acquisi-
tion of images. The sample was composed of 911 
pixels of healthy plants, 675 pixels of unhealthy 
plants, and 22208 pixels of other types of vegeta-
tion. The samples were used in a systematic fashion 
in the forty-six classification rounds for each type 
of classification, namely ML and SVM. 

calculated with the characteristic vector that offers 
the best results in the classification, that is, the 
classification that reaches one of the highest values 
of kappa. 

2.3 Texture analysis
Two main categories of texture analysis are namely 
statistical and model-transform approaches.

2.3.1 Occurrence analysis
Occurrence analysis is done through the first-order 
statistics, calculated from the original values of the 
image, and do not consider the neighborhood rela-
tions of pixels. The most common statistics are the 
mean (Eq. 1), the variance (Eq. 2), the asymmetry 
coefficient, the kurtosis, among others [25-26].
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Fig. 3. Distribution of training and test samples located 
on the gray-tone image
Source: Author

2.2.4. Classification Assessment
In terms of assessment and validation of the clas-
sification results, nine samples were selected to 
validate the information (30% of the number of 
training samples). Visual interpretation was taken 
as the reference for validation. The same samples 
were used in all classification processes. Each of 
the 46 classified images is assessed using OA and Κ 
so as to determine their contribution, in terms of 
texture measurements, to the correct classification 
of the phytosanitary condition of Espeletia plants. 
On the other hand, the Bhattacharyya distance is 

Training areas Test areas
Unhealthy plants Unhealthy plants
Healthy plants Healthy plants
Other types of vegetation Other types of vegetation
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where Pi,j is the normalized matrix of gray levels in 
cell i, j, N is the number of rows or columns, σi and 
σi represent the standard deviation of row i and 
column j, respectively; μi and μj represent the mean 
of row i and column j, respectively. The entries of 
the normalized matrix Pi,j (Eq. 6) are given by the 
following expression:
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where Ci,j is the value of cell i, j in the matrix.

2.3.3. Fourier transform
In the case of a discrete function (image) f (x, y) 
of two variables and N×N size, Fourier transform 
(Eq. 7) will be:
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And inverse transform is defined in Eq. 8:
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Fourier transform (FT) is a transformation 
that allows the calculation of the necessary coef-
ficients so that the image can be represented in 
the frequency domain [20] [27]. Representations 
in this domain detail how often certain patterns 
are repeated in an image, managing to represent 
the information of that image. This representation 
can be useful since having the frequency of repeti-
tion of such patterns can directly detect and alter 
elements present in the images, such as noise, con-
tours or textures [27], [28].

2.4 Image classification
The information of multispectral images is gath-
ered in the classification process, allowing the 
acquisition of cartographic information and the 
determination of the categories that will be studied 
[29]. In the present study, the categories correspond 

to healthy and unhealthy Espeletia plants. The 
remaining coverage areas will be classified as other 
vegetation. Within the classification process, three 
stages can be identified: i) category definition, ii) 
pixel distribution for the images in each category, 
iii) assessment and validation of results [29]. The 
categories can be defined, with or without the 
intervention of an operator, which corresponds to 
supervised and unsupervised classification pro-
cesses, respectively. Pixel distribution is based on a 
simple assumption, namely, patterns are classified 
according to the degree of similarity to a specific 
prototype class or according to the nearest group 
center, using the concept of distance. 

Maximum Likelihood classifier (ML) is one 
of the most popular methods of classification in 
remote sensing. It assumes that the data follows a 
normal distribution; thus a pixel is associated to 
the class that maximizes its probability function 
[29]. Support Vector Machine classification (SVM) 
is a supervised machine learning algorithm. It is a 
non-parametric method that uses the principle of 
structural risk minimization, aimed at minimiz-
ing the training error and does not assume a nor-
mal distribution of the data [29]. 

2.4.1 Bhattacharyya distance
The classes or categories considered to classify the 
images must be evaluated in order to establish the 
real separability of these categories. There are sev-
eral numerical methods to estimate separability, 
such as normalized distance, statistical divergence, 
transformed divergence, Bhattacharyya distance, 
among others [30]. The distance of Bhattacharyya 
(BD - Eq. 9) is a very solid measure theoretically 
because it is directly related to the upper limit of 
the probabilities of classification errors [29]. Bhat-
tacharyya distance between a pair of classes  is 
defined as:
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This measure of separability yields values 
between 0 and 2, where 0 indicates that the classes 
are superimposed, and 2 means that there is com-
plete separability between the classes. An empirical 
rule for interpreting the Bhattacharyya distance 
values is as follows: BD <1 indicates very poor 
separability, 1 <BD <1.9 indicates that the classes 
are separable to some extent and BD> 1.9 indicates 
high separability between classes [29], [31].

2.4.2 Confusion matrix
The confusion matrix is a square matrix of size 
n × n, where n indicates the number of categories 
considered in the classification. The rows of the 
matrix represent the reference categories (ground 
truth) and the columns, the categories classified. 
The diagonal of the matrix shows the number of 
verification points where the classified map and 
reality do not present discrepancies [30]. The resid-
ual values of the matrix represent the assignment 
errors committed in the classification: The residu-
als in the rows indicate the actual covers that were 
not included in the map (errors of omission), and 
the residual values of the columns indicate the 
covers of the map that do not conform to reality 
(commission errors).

From the confusion matrix, a series of statisti-
cal measures can be developed to evaluate the reli-
ability of the map obtained. The simplest way is to 
calculate the overall accuracy (OA – Eq. 11), where 
the diagonal elements of the confusion matrix  are 
related to the total number of sampled points xij 
[30].
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Kappa coefficient (Κ – Eq. 12) calculates the 
fit of the classified map and the reality observed 
in the terrain and eliminates the coincidences 
obtained in the classification that could be caused 
by random effects [29].
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 (12)

Where, N: total number of reference pixels, xi+: 
marginal totals of row i, x+i: marginal totals of 
row j.

3. Results and discussion
Results are presented from three perspectives, 
namely: texture analysis, image classification and 
classification assessment.

Regarding texture analysis, twenty-two char-
acteristic vectors were generated (from both the 
original RGB and the original NIR image) accord-
ing to their texture measurement and to their win-
dow size. Figure 4 is an example of the visual result 
obtained from applying different texture measure-
ments to the images of healthy and unhealthy 
Espeletia plants. 

Concerning image classification, figure 5 shows 
a set of results obtained from the classification 
processes. In the figure, the red color indicates the 
presence of unhealthy plants, and the Green color 
is used for healthy plants; finally, the gray areas 
indicate the presence of other types of vegetation.

About classification assessment, tables 1 to 6 
show the values of overall accuracy and Kappa 
coefficient obtained from the two classification 
processes (i.e. ML and SVM) for each of the forty-
six images. Table 1 shows that the vector of NIR 
characteristics that includes the three bands of 
the mean in the 5×5 size yielded the best results 
with a Kappa coefficient of 0.9623 and an overall 
accuracy of 98.949%. Likewise, it is clear that the 
combination of the NIR image with the textural 
measurement of the mean in any size shows results 
better than those obtained with the variance. The 
behavior of the data is similar in the SVM classifi-
cation (table 2).

Where, 
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Fig. 4. Texture measurements over images of healthy and unhealthy Espeletia plants. (a) Healthy Espeletia in RGB 
with CON and 5x5 window size. (b) Healthy Espeletia in RGB, with COR and 11x11. (c) Healthy Espeletia in RGB, with 
ENT and 15x15. (d) Unhealthy Espeletia in NIR, with CON and 5x5. (e) Unhealthy Espeletia in NIR, with COR and 11x11. 
(f) Unhealthy Espeletia in NIR, with ENT and 15x15. (g) Healthy Espeletia in RGB with MEA and 5x5 window size. (h) 
Healthy Espeletia in RGB, with VAR and 11x11. (i) Healthy Espeletia in RGB, with Fourier Transform. (j) Unhealthy 
Espeletia in NIR, with MEA and 5x5. (k) Unhealthy Espeletia in NIR, with VAR and 15x15. (l) Unhealthy Espeletia in 
NIR, with Fourier Transform.
Source: Author

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
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Fig. 5. ML vs SVM classification, unhealthy plants appear in red, healthy plants appear in green; gray areas repre-
sent other types of vegetation. (a) ML classification in RGB images. (b) ML classification in RGB images with ENT and 
15x15. (c) ML classification in NIR images with ENT and 5x5. (d) ML classification in NIR images with ENT. (e) SVM 
classification in RGB images. (f) SVM classification in RGB images with ENT and 15x15. (g) SVM classification in NIR 
images with ENT and 5x5. (h) ML classification in NIR images with ENT and 15X15 (i) ML classification in RGB images 
with FT. (j) ML classification in NIR images with MEA and 5x5. (k). SVM classification in RGB images with 3VAR and 
5x5. (l) SVM classification in NIR images with 3MEA and 15x15.
Source: Author

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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Table 1. Accuracy assessment of occurrence analysis with ML classification in each image

CHARACTERISTIC VECTOR OA Κ CHARACTERISTIC VECTOR OA Κ

RGB 99.22% 0.8673 NIR 98.68% 0.8526

RGB_MEA 5 99.62% 0.9305 NIR_MEA 5 98.82% 0.9579

RGB_MEA 11 99.68% 0.8437 NIR_MEA 11 98.85% 0.9588

RGB_MEA 15 99.67% 0.9387 NIR_MEA 15 98.79% 0.9566

RGB_3 MEA 5 99.62% 0.9307 NIR_3 MEA 5 98.95% 0.9623

RGB_3 MEA 11 99.53% 0.9142 NIR_3 MEA 11 98.66% 0.9523

RGB_3 MEA 15 99.33% 0.8816 NIR_3 MEA 15 98.48% 0.9458

RGB_VAR 5 99.43% 0.9000 NIR_VAR 5 97.49% 0.9071

RGB_VAR 11 99.54% 0.9156 NIR_VAR 11 97.03% 0.8880

RGB_VAR 15 99.54% 0.9157 NIR_VAR 15 97.15% 0.8934

RGB_3 VAR 5 98.29% 0.7464 NIR_3 VAR 5 97.33% 0.9009

RGB_3 VAR 11 98.96% 0.8224 NIR_3 VAR 11 97.14% 0.8929

RGB_3 VAR 15 98.57% 0.7688 NIR_3 VAR 15 97.45% 0.9052

Source: Author

Table 2. Accuracy assessment of occurrence analysis with SVM classification in each image

CHARACTERISTIC VECTOR OA Κ CHARACTERISTIC VECTOR OA Κ

RGB 98.89% 0.7595 NIR 97.76% 0.8163

RGB_MEA 5 98.92% 0.7774 NIR_MEA 5 98.04% 0.9272

RGB_MEA 11 99.03% 0.7904 NIR_MEA 11 98.74% 0.9540

RGB_MEA 15 99.25% 0.8437 NIR_MEA 15 99.07% 0.9663

RGB_3 MEA 5 98.95% 0.7820 NIR_3 MEA 5 98.88% 0.9594

RGB_3 MEA 11 98.83% 0.7556 NIR_3 MEA 11 99.47% 0.9811

RGB_3 MEA 15 99.26% 0.8457 NIR_3 MEA 15 99.51% 0.9824

RGB_VAR 5 99.25% 0.9193 NIR_VAR 5 96.81% 0.8776

RGB_VAR 11 99.31% 0.8748 NIR_VAR 11 96.61% 0.8689

RGB_VAR 15 99.03% 0.8210 NIR_VAR 15 97.09% 0.8886

RGB_3 VAR 5 99.64% 0.9305 NIR_3 VAR 5 96.95% 0.8834

RGB_3 VAR 11 99.51% 0.9056 NIR_3 VAR 11 96.93% 0.8820

RGB_3 VAR 15 99.33% 0.8666 NIR_3 VAR 15 96.97% 0.8834

Source: Author

Regarding the results of GLCM (table 3 and 4), 
ENT offers the best results in both cases (SVM and 
ML classification). In the ML classification (table 3) 

the best results used all three texture bands, while 
in the SVM classification (table 4) the best results 
only used one texture band.
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Accuracy assessment of Fourier transform 
(Table 6) shows that the NIR image yields a Kappa 
coefficient of 0.9722 and an overall accuracy of 
99.230%, and in the case of the RGB image, a Kappa 
coefficient of 0.8788 and an overall accuracy defi-
nition of 99.298% is achieved. It is clear that the 

Table 3. Accuracy assessment of GLMC with ML classification in each image

CHARACTERISTIC VECTOR OA Κ CHARACTERISTIC VECTOR OA Κ

RGB 99.22% 0,8673 NIR 98,68% 0.9526

RGB CON 5x5 99.25% 0,8712 NIR CON 5x5 98,81% 0.9574

RGB CON 11x11 99.40% 0,8871 NIR CON 11x11 98,37% 0.9410

RGB CON 15x15 99.37% 0,8782 NIR CON 15x15 97.70% 0.9161

RGB ENT 5x5 99.70% 0.9448 NIR ENT 5x5 99.29% 0.9745

RGB ENT 11x11 99.69% 0.9440 NIR ENT 11x11 99.14% 0.9692

RGB ENT15x15 99.73% 0.9495 NIR ENT 15x15 98,80% 0.9570

RGB COR 5x5 99.31% 0,8807 NIR COR 5x5 98.79% 0.9566

RGB COR 11x11 99.27% 0,8748 NIR COR 11x11 98,85% 0.9587

RGB COR 15x15 99.22% 0,8669 NIR COR 15x15 98,80% 0.9570

Source: Author

Table 4. Accuracy assessment of GLMC with SVM classification in each image

CHARACTERISTIC VECTOR OA Κ CHARACTERISTIC VECTOR OA Κ

RGB 98,89% 0.7595 NIR 97.76% 0.9163

RGB CON 5x5 99.37% 0,8836 NIR CON 5x5 97,58% 0.9089

RGB CON 11x11 99.22% 0,8567 NIR CON 11x11 97.74% 0.9152

RGB CON 15x15 99.14% 0,8435 NIR CON 15x15 97,66% 0.9131

RGB ENT 5x5 99.43% 0,8908 NIR ENT 5x5 96,66% 0,8702

RGB ENT 11x11 95,57% 0.9113 NIR ENT 11x11 97,15% 0,8911

RGB ENT15x15 99.68% 0.9393 NIR ENT 15x15 98,41% 0.9413

RGB COR 5x5 98,68% 0.7027 NIR COR 5x5 96,83% 0,8783

RGB COR 11x11 98,69% 0.7055 NIR COR 11x11 96.94% 0,8829

RGB COR 15x15 98,50% 0,6600 NIR COR 15x15 97,08% 0,8887

Source: Author

Fourier transformation improves the accuracy of 
the evaluation compared to the original data (RGB 
and NIR). In other words, the results are better for 
the SVM classification than ML classification (table 
5).

Table 5. Accuracy assessment of Fourier transform with ML classification in each image

CHARACTERISTIC VECTOR OA Κ CHARACTERISTIC VECTOR OA Κ

RGB 98.89% 0.7595 NIR 97.76% 0.8163

RGB_TF 99.02% 0.7985 NIR_TF 97.31% 0.8971

Source: Author
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By analyzing together figure 5 and tables 1 to 
6, it is evident that OA is similar in all classifica-
tions, and an improvement in the classification is 
reflected in a better Κ.

Tables 7 and 8 show the distance of Bhattacha-
ryya to evaluate the separability of classes in the 
characteristic vectors, namely NIR_3 ENT 5x5 (best 
classification in GLMC with ML) and RGB_3 ENT 
5x5 respectively. Results show that only classes 
that will have a probability of being confused in 
the classification are the healthy Espeletia with 
the other kind of vegetation, because its values are 
lower than 1.9. With regard to unhealthy plants, 
theses cannot be confused with healthy plants, 
because distance of Bhattacharyya is higher than 
1.9, so this means that they are separable. Thus, 
upon comparing results, Sastoque et al. [19] reaf-
firm spectral separability of healthy Espeletia ver-
sus unhealthy Espeletia.

On the other hand, by observing table 1 to 6, 
it is clear that the values of both OA and Κ, for 
the case of RGB images, improve when including 
texture measurements. A similar behavior can be 

observed for the case of NIR images. As to occur-
rence analysis, the best result was obtained in 
NIR_3 MEA 15, with OA = 99.51% and Κ = 0.9824. In 
regard to GLMC, the best result was achieved with 
NIR ENT 5x5, with OA = 99.29% and Κ = 0.9745. 
Finally, Fourier transform reached with NIR_TF an 
OA = 99.23% and Κ = 0.9722.

As regard GLMC, the highest values of OA and 
Κ were obtained from the ML classifier with ENT as 
the texture measurement. In the case of true color 
images, with parameters RGB, ENT, and 15x15, the 
OA value was 99.73%, while the value of Κ was 
0.9495. Meanwhile, for the case of false color, with 
the NIR, ENT, 5x5 image, the OA value was 99.29% 
with a Κ value of 0.9745. Regarding the results 
obtained when including texture measurements 
COR and CON, for the case of RGB images, no win-
dow size yielded a value of Κ above 0.9. However, 
for the case of NIR images, Κ values were very simi-
lar to those obtained when no texture measure-
ment was applied. 

The results presented herein compare to those 
obtained in other studies in several ways. Regarding 

Table 6. Accuracy assessment of Fourier transform with SVM classification in each image

CHARACTERISTIC VECTOR OA Κ CHARACTERISTIC VECTOR OA Κ

RGB 99.22% 0.8673 NIR 98.68% 0.8526

RGB_TF 99.29% 0.8788 NIR_TF 99.23% 0.9722

Source: Author

Table 7. Bhattacharyya distance in the characteristic vectors NIR_3 ENT 5x5

Healthy Espeletia plants Unhealthy Espeletia plants Other kind of vegetation

Healthy Espeletia plants -

Unhealthy Espeletia plants 1.96687835 -

Other kind of vegetation 1.84510403 1.99969828 -

Source: Author

Table 8. Bhattacharyya distance in the characteristic vectors RGB_3 ENT 5x5

Healthy Espeletia plants Unhealthy Espeletia plants Other kind of vegetation

Healthy Espeletia plants -

Unhealthy Espeletia plants 1.92680578 -

Other kind of vegetation 1.83021412 1.99910621 -

Source: Author
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the texture window size, Feng et al. [13] indicated 
that the enlargement of the window size increases 
the accuracy until reaching an optimal texture 
scale; however, finding a formula to determine the 
optimal scale is cumbersome. In our case, most of 
the best results were obtained with a window size 
of 15x15; however, it was necessary to conduct dif-
ferent experiments with different window sizes to 
find the optimal scale that allowed identification 
of Espeletia. Despite this limitation, the inclusion 
of the texture in the characteristic vector led to an 
increase in the value of Κ in all cases (e.g. the case of 
occurrence analysis in the RGB images going from 
Κ = 0.7595 to Κ = 0.9303). Thus, in a similar way to 
the works of David and Ballado [9], Laliberte and 
Rango [11], Yue et al. [12], Feng et al. [13], Hashim 
et al. [15], Ferreira et al. [16] and Mishra [17], the 
incorporation of textural measures increases the 
classification accuracy remarkably.

Concerning the spectral separability of classes 
in the characteristic vectors, the results show 
that unhealthy Espeletia will not be mistaken by 
healthy Espeletia since the Bhattacharyya distance 
is larger than 1.9. These results compare to the 
study by Ferreira et al. [16], in which Bhattacha-
ryya distance was used to verify whether the GLCM 
texture features influence the interspecific spectral 
separability of the species. Moreover, when includ-
ing texture measurements in the classification 
process, the values of Κ and OA are similar (even 
better) to the values obtained with the SAM method 
(Spectral Angler Mapper), which makes use of 
field spectral radiometry [19]; this method yielded 
a Κ value of 0.772 and an OA value of 95.96% while 
our best result (NIR_3 MEA15) reaches a Κ value 
of 0.9824 and an OA value of 99.51%. These results 
allow proper identification unhealthy Espeletia.

In terms of biotic stress, similar to the works in 
Ondimu and Murase [14], Susi č et al. [5] and 
Žibrat et al. [6], the use of remote sensing imag-
ery techniques allows the identification and spatial 
location of the stress areas, namely biotic stress in 
Espeletia plants, as in the present study.

These results show that the use of textural 
measures on images acquired with UAV allows an 
improvement in the classification of the images [9], 

[12], [13] for the purpose of identifying biotic 
stress. The extent of the improvement permits a 
comparison with the results obtained by spectro-
radiometry in the field, which opens the possibil-
ity of reducing costs in field studies and allows the 
exploration of larger areas with shorter processes 
demanding less time. Additionally, the presented 
approach enables frequent monitoring of the area 
of interest given the possibility of revisit offered by 
UAV flights [12]. This type of analysis offers a pre-
liminary approximation of the affected areas lead-
ing to timely decision-making for the improvement 
actions taken by thematic experts.

4. Conclusion
UAV-imagery (RGB and NIR images) were taken 
in an area of interest in the moorlands of Chin-
gaza (Colombia). As a result of digital processing 
of UAV-imagery and their subsequent analysis, it 
was concluded that the inclusion of GLCM texture 
measurements into the spectral information of 
images significantly improved classification accu-
racy when identifying the presence of biotic stress 
in Espeletia plants. Texture measurement MEA 
yielded the best results for all classification pro-
cesses, attaining an almost ideal matching, namely 
a Κ value of 0.9824 and an OA value of 99.51%. Like-
wise, the window size leading to the best results, 
when using the RGB and NIR spectral information, 
was 15x15. In terms of classification accuracy, the 
results were slightly better when using the SVM 
classifier, compared to the results obtained with 
the ML classifier. Likewise, better classification 
results were obtained from NIR images when com-
pared to those from RGB images.

The use of textural measures for the identifi-
cation of phytosanitary status of Espeletia, is pre-
sented as an alternative for monitoring the biotic 
stress that this kind of vegetation has been present-
ing in recent times, because it allows identifying 
potentially affected areas so that specialists of the 
subject can take (preventive or corrective) actions 
in order to preserve the species Moreover, images 
can be taken with the desired frequency, thus 
monitoring can be carried out as regularly as the 
specialists may require.



42 ■  L. Martín  ■   J. Medina  ■  E. Upegui 

Revista Ciencia e Ingeniería Neogranadina  ■  Vol. 30(1) 

References
[1] FAO. ¿Por qué invertir en el desarrollo sostenible de las 

montañas?, Roma, 2014.

[2] O. V. Ríos and P. Pedraza. El Parque Nacional Natural 
Chingaza. UNal de Colombia, 2004.

[3] A. Sanchez, A. Rey-Sánchez, J.M. Posada, W. K. 
Smith. “Interplay of Seasonal Sunlight, Air and Leaf 
Temperature in Two Alpine Paramo Species, Colom-
bian Andes.” Agricultural and Forest Meteorology, pp 
253–254, (2018), 38–47. https://doi.org/10.1016/j.agr-
formet.2018.01.033.

[4] M. Cabrera and W. Ramírez. Restauración Ecológica 
de los Páramos de Colombia: Transformación y Herra-
mientas para su Conservación. Min Ambiente, Institu-
to von Humboldt, 2014.
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