Tratamiento de lixiviados de relleno sanitario por medio de oxidación en agua supercrítica

Palabras clave: lixiviados, SCWO, destrucción de COT, destrucción de nitrógeno total

Resumen

El tratamiento de lixiviados por medio de diferentes procesos fisicoquímicos y biológicos ha sido ampliamente estudiado. Sin embargo, ningún proceso logra las eficiencias de destrucción requeridas en cuanto a materia orgánica y nitrógeno, razón por la cual el tratamiento se realiza por medio de tecnologías combinadas. La oxidación en agua supercrítica o SCWO, proceso que se lleva a cabo a temperaturas y presiones superiores a las del punto crítico del agua en presencia de una fuente de oxígeno, se ha aplicado exitosamente al tratamiento de distintos tipos de aguas residuales de forma eficiente. Por lo tanto, este trabajo presenta un estudio experimental de la oxidación en agua supercrítica de lixiviados de relleno sanitario en un reactor batch, en el rango de temperatura de 400-500°C, tiempos de reacción de 15 a 30 minutos y excesos de oxígeno (OE) de 100 % a 300 %. Se midieron las eficiencias de destrucción de carbono orgánico total (COT) y nitrógeno total (NT), y se determinó el efecto combinado de los factores estudiados por medio del Análisis de Varianza (ANOVA). Las condiciones de operación óptimas para la destrucción de COT fueron 400°C, 30 min y 100 % OE, y 500°C, 30 min y 100 % OE para el NT. A diferencia de lo reportado en estudios similares, los resultados sugieren que es posible llevar a cabo la destrucción simultánea del COT y el NT en los lixiviados por medio de SCWO a 400°C, 100 % OE y tiempos de residencia de más de 30 min sin usar un catalizador, ya sea en un proceso batch o continuo, siempre y cuando tanto el oxidante como el agua residual se mezclen y se calienten juntos a la temperatura de reacción.

Biografía del autor/a

Victor Fernando Marulanda Cardona, Universidad de La Salle
Chemical Engineer, Ph.D. in Engineering. La Salle University, Titular Professor. Bogotá, Colombia. E-mail: vfmarulanda@lasalle.edu.co. ORCID: http://orcid.org/0000-0001-8038-2536
Paola Andrea Marulanda Buitrago, Universidad de La Salle
Environmental and Sanitary Engineer. Bogota, Colombia. E-mail: pmarulanda66@unisalle.edu.co. ORCID: http://orcid.org/0000-0001-9168-5591
Didier Haid Alvarado Acosta, University of Strathclyde
Environmental and Sanitary Engineer, Student of MSc. Hydrogeology, University of Strathclyde, Glasgow, United Kindom. E-mail: didier.alvarado-acosta.2016@uni.strath.ac.uk. ORCID: http://orcid.org/0000-0002-7092-0721

Descargas

Los datos de descargas todavía no están disponibles.

Agencias de apoyo:

Colciencias

Biografía del autor/a

Victor Fernando Marulanda Cardona, Universidad de La Salle
Chemical Engineer, Ph.D. in Engineering. La Salle University, Titular Professor. Bogotá, Colombia. E-mail: vfmarulanda@lasalle.edu.co. ORCID: http://orcid.org/0000-0001-8038-2536
Paola Andrea Marulanda Buitrago, Universidad de La Salle
Environmental and Sanitary Engineer. Bogota, Colombia. E-mail: pmarulanda66@unisalle.edu.co. ORCID: http://orcid.org/0000-0001-9168-5591
Didier Haid Alvarado Acosta, University of Strathclyde
Environmental and Sanitary Engineer, Student of MSc. Hydrogeology, University of Strathclyde, Glasgow, United Kindom. E-mail: didier.alvarado-acosta.2016@uni.strath.ac.uk. ORCID: http://orcid.org/0000-0002-7092-0721

Referencias bibliográficas

P. Ghosh, I. S. Thakur and A. Kaushik, “Bioassays for toxicological risk assessment of landfill leachate: A review,” Ecotoxicol. Environ. Saf., vol.141, pp. 259-270, Jan. 2017. https://doi.org/10.1016/j.ecoenv.2017.03.023

T. A. Kurniawan, W. H. Lo and G. Y. S. Chan, “Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate,” Jour. Hazard. Mater., vol. 129, no. 1-3, pp. 80-100, 2006. https://doi.org/10.1016/j.jhazmat.2005.08.010

Y. N. Vodyanitskii, “Biochemical processes in soil and groundwater contaminated by leachates from municipal landfills (Mini Review),” Ann. Agrar. Sci., vol.14, no. 3, pp. 1512-1887, 2016. https://doi.org/10.1016/j.aasci.2016.07.009

N. B. Yenigül, A. M. M. Elfeki, J. C. Gehrels, C. van den Akker, A. T. Hensbergen and F. M. Dekking, “Reliability assessment of groundwater monitoring networks at landfill sites,” Jour. Hydrol., vol. 308, no. 1-4, pp. 1-17, 2005. https://doi.org/10.1016/j.jhydrol.2004.10.017

S. Renou, J. G. Givaudan, S. Poulain, F. Dirassouyan and P. Moulin, “Landfill leachate treatment: Review and opportunity,” Jour. Hazard. Mater., vol. 150, no. 3, pp. 468-493, 2008. https://doi.org/10.1016/j.jhazmat.2007.09.077

J. M. Ploeger, A. C. Madlinger and J. W. Tester, “Revised Global Kinetic Measurements of Ammonia Oxidation in Supercritical Water,” Ind. Eng. Chem. Res., vol. 45, no. 20, pp. 6842-6845, 2006. https://doi.org/10.1021/ie0605276

M. D. Bermejo, F. Cantero and M. J. Cocero, “Supercritical water oxidation of feeds with high ammonia concentrations Pilot plant experimental results and modeling,” Chem. Eng. Jour., vol.137, no. 3, pp. 542-549, 2008. https://doi.org/10.1016/j.cej.2007.05.010

L. Labiadh, A. Fernandes, L. Ciríaco, M. J. Pacheco et al., “Electrochemical treatment of concentrate from reverse osmosis of sanitary landfill leachate,” J. Environ. Manage., vol. 181, pp. 515-521, Oct. 2016. https://doi.org/10.1016/j.jenvman.2016.06.069

J. Xu, Y. Long, D. Shen, H. Feng and T. Chen, “Optimization of Fenton treatment process for degradation of refractory organics in pre-coagulated leachate membrane concentrates,” Jour. Hazard. Mater., vol. 323, pp. 674-680, 2017. https://doi.org/10.1016/j.jhazmat.2016.10.031

S. Renou, S. Poulain, J. G. Givaudan and P. Moulin, “Treatment process adapted to stabilized leachates: Lime precipitation-prefiltration-reverse osmosis,” Jour. Memb. Sci., vol. 313, no. 1-2, pp. 9-22, 2008. https://doi.org/10.1016/j.memsci.2007.11.023

J. R. Portela, E. Nebot and E. Mart, “Hydrothermal oxidation: Application to the treatment of different cutting fluid wastes,” Jour. Hazard. Mater., vol. 144, no. 3, pp. 639-644, 2007. https://doi.org/10.1016/j.jhazmat.2007.01.088

M. J. Cocero, E. Alonso and M. T. Sanz, “Supercritical water oxidation process under energetically self-sufficient operation,”. Jour. Supercrit. Fluids, vol. 24, no. 1, pp. 37-46, 2002. https://doi.org/10.1016/s0896-8446(02)00011-6

Y. García-Rodríguez, F. Mato, A. Martín, M. D. Bermejo and M. J. Cocero, “Energy recovery from effluents of supercritical water oxidation reactors,” Jour. Supercrit. Fluids, vol. 104, pp. 1-9, Sep. 2015. https://doi.org/10.1016/j.supflu.2015.05.014

V. F. Marulanda, “Biodiesel production by supercritical methanol transesterification: Process simulation and potential environmental impact assessment,” Jour. Clean. Prod., vol. 33, pp. 109-116, 2015. https://doi.org/10.1016/j.jclepro.2012.04.022

V. Marulanda and G. Bolaños, “Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil: Laboratory-scale data and economic assessment,” Jour. Supercrit. Fluids, vol. 54, pp. 258-265, Aug. 2010. https://doi.org/10.1016/j.supflu.2010.04.008

J. M. N. van Kasteren and a. P. Nisworo, “A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification,” Resour. Conserv. Recycl., vol. 50, no. 4, pp. 442-458, 2007. https://doi.org/10.1016/j.resconrec.2006.07.005

B. Cui, F. Cui, G. Jing, S. Xu et al., “Oxidation of oily sludge in supercritical water,” Jour. Hazard. Mater., vol. 165, no. 1-3, pp. 511-517, 2009. https://doi.org/10.1016/j.jhazmat.2008.10.008

M. Akg and O. Onur, “Treatment of textile wastewater by SCWO in a tube reactor,” Jour. Supercrit. Fluids, vol. 43, no.1, pp. 106-111, 2007.

X. Du, R. Zhang, Z. Gan and J. Bi, “Treatment of high strength coking wastewater by supercritical water oxidation,” Fuel, vol. 104, pp. 77-82, Feb. 2013. https://doi.org/10.1016/j.fuel.2010.09.018

B. Veriansyah, T. Park, J. Lim and Y. Lee, “Supercritical water oxidation of wastewater from LCD manufacturing process : kinetic and formation of chromium oxide nanoparticles,” Jour. Supercrit. Fluids, vol. 34, no. 1, pp. 51-61, 2005. https://doi.org/10.1016/j.supflu.2004.10.001

P. A. Marrone, “Supercritical water oxidation. Current status of full-scale commercial activity for waste destruction,” Jour. Supercrit. Fluids, vol. 79, pp. 283-288, Jul. 2013. https://doi.org/10.1016/j.supflu.2012.12.020

W. Gong and X. Duan, “Degradation of landfill leachate using transpiring-wall supercritical water oxidation (SCWO) reactor,” Waste Manag., vol. 30, no. 11, pp. 2103-2107, 2010. https://doi.org/10.1016/j.wasman.2010.04.028

S. Wang, Y. Guo, C. Chen, J. Zhang et al., “Supercritical water oxidation of landfill leachate,” Waste Manag., vol. 31, no. 9-10, pp. 2027-2035, 2011. https://doi.org/10.1016/j.wasman.2011.05.006

D. Zou, Y. Chi, C. Fu, J. Dong, “Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant,” Jour. Hazard. Mater., vol. 248-249, pp. 177-184, 2013. https://doi.org/10.1016/j.jhazmat.2013.01.005

K. Hatakeda, Y. Ikushima, O. Sato, T. Aizawa and N. Saito, “Supercritical water oxidation of polychlorinated biphenyls using hydrogen peroxide,” vol. 54, no. 15-16, pp. 3079-3084, 1999. https://doi.org/10.1016/s0009-2509(98)00392-3

E. Croiset, S. F. Rice and R. G. Hanush, “Hydrogen peroxide decomposition in supercritical water,” Am. Inst. Chem. Eng., vol. 43, no. 9, pp. 2343-2352, 1997. https://doi.org/10.1002/aic.690430919

M. Mukhopadhyay. Natural Extracts Using Supercritical Carbon Dioxide. Florida, USA: CRC Press, 2000. https://doi.org/10.1201/9781420041699

J. L. Dinaro, P. A. Marrone, S. F. Rice, P. A. Webley, “Critical review of kinetic data for the oxidation of methanol in supercritical water,” Jour. Supercrit. Fluids, vol. 34, no. 3, pp. 249-286, 2005. https://doi.org/10.1016/j.supflu.2003.12.018

D. C. Montgomery. Design and Analysis of Experiments (8th. Ed.). Nueva York: John Wiley & Sons, 2012.

B. Veriansyah, J. Kim and J. Lee, “Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor,” Jour. Hazard. Mater., vol. 147, no. 1-2, pp. 13-19, 2007. https://doi.org/10.1016/j.jhazmat.2006.12.040

R. Killilea, K. C. Swallow and G. T. Hong, “The Fate of Nitrogen in Supercritical-Water Oxidation,” Jour. Supercrit. Fluids, vol. 5, no. 1, pp. 72-78, 1992. https://doi.org/10.1016/0896-8446(92)90044-k

G. Knothe, A. C. Matheaus and T. W. Ryan, “Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester,” Fuel, vol. 82, no. 8, pp. 971-975, 2003. https://doi.org/10.1016/s0016-2361(02)00382-4

K. M. Benjamin and P. E. Savage, “Supercritical Water Oxidation of Methylamine,” Ind. Eng. Chem. Res., vol. 44, no. 14, pp. 5318-5324, 2005. https://doi.org/10.1021/ie0491793

S. Yesodharan, “Supercritical water oxidation : An environmentally safe method for the disposal of organic wastes,” Current Science, vol. 82, no. 9, pp. 1112-1122, 2002.

Z. Fang, S. K. Xu, R. L. Smith Jr., K. Arai and J. A. Kozinski, “Destruction of deca-chlorobiphenyl in supercritical water under oxidizing conditions with and without Na2CO3,” Jour. Supercrit. Fluids, vol. 33, no. 3, pp. 247-258, 2005. https://doi.org/10.1016/j.supflu.2004.08.010

T. E. Butt, E. Lockley and K. O. K. Oduyemi, “Risk assessment of landfill disposal sites - State of the art,” Waste Manag., vol. 28, no. 6, pp. 952-964, 2008. https://doi.org/10.1016/j.wasman.2007.05.012

J. A. Reyes-López, J. Ramírez-Hernández, O. Lázaro-Mancilla, C. Carreón-Diazconti and M. M. L. Garrido, “Assessment of groundwater contamination by landfill leachate: A case in México,” Waste Manag., vol. 28, no. 1, pp. 33-39, 2008. https://doi.org/10.1016/j.wasman.2008.03.024

Cómo citar
Marulanda Cardona, V. F., Marulanda Buitrago, P. A., & Alvarado Acosta, D. H. (2017). Tratamiento de lixiviados de relleno sanitario por medio de oxidación en agua supercrítica. Ciencia E Ingeniería Neogranadina, 27(2), 5–26. https://doi.org/10.18359/rcin.2305
Publicado
2017-08-01
Sección
Artículos

Métricas

QR Code